
BEAM BREAKUP INSTABILITY AND COHERENT
SYNCHROTRON RADIATION LIMITS OF THE

PARTICLE ACCELERATOR CBETA

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

William Lou

May 2020



c© 2020 William Lou

ALL RIGHTS RESERVED



BEAM BREAKUP INSTABILITY AND COHERENT SYNCHROTRON
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The construction of Cornell BNL Energy-Recovery-Linac Test Accelerator

(CBETA) was completed at Cornell University’s Wilson Laboratory in 2019.

CBETA is designed to accelerate electrons from 6 MeV to 150 MeV in four linac

passes using a single Fixed Field Alternating gradient (FFA) return beamline ac-

cepting all energies from 42 to 150 MeV. Energy recovery is achieved by decel-

erating the beam within the Superconducting Radio Frequency (SRF) cavities,

in which the beam returns energy to the electromagnetic field. Energy recovery

allows CBETA to produce a beam current much higher than with conventional

storage rings.

This thesis focuses on two important limits of CBETA: the beam current limit

due to Beam Breakup (BBU) instability and the bunch charge limit due to Co-

herent Synchrotron Radiation (CSR) effects. For BBU, elementary theories are

revisited to benchmark the simulation codes. Additional theory regarding the

scaling law of the threshold current and the effect of chromaticity are also in-

vestigated. For CSR, a new ”2-bend” theory has been developed by extending

the conventional 1-bend theory using the Lienard-Wiechert formula. The new

theory is essential to describe CSR wake propagation when magnets are located

close to each other, as in CBETA. These new theories could benefit designs and

researches of future ERLs. For both topics, extensive simulations have been per-

formed using the software developed by Cornell University, Bmad.
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CHAPTER 1

INTRODUCTION

1.1 ERL and CBETA

Energy recovery linacs (ERLs) open up a new regime of beam parameters with

large current and simultaneously small emittances, bunch lengths, and energy

spread. The Cornell BNL ERL Test Accelerator (CBETA) is the first accelerator

constructed to analyze the potential of multi-turn ERLs with superconducting

SRF accelerating cavities [1]. New beam parameters of ERLs allow for new ex-

periments such as nuclear and high energy colliders, electron coolers, internal

scattering experiments, X-ray sources or Compton backscattering sources for

nuclear or X-ray physics [2][3][4]. By recirculating charged beams back into the

accelerating cavities, energy can be recovered from the beams to the electro-

magnetic fields of the cavities. Energy recovery allows an ERL to operate at a

much higher current than conventional linacs, where the current is limited by

the power consumption by the cavities. While electron beams recirculate for

thousands of turns in storage rings, they travel only a few turns in an ERL be-

fore being dumped. The short circulation time allows beam emittances to be as

small as for a linac. The potentials for high beam current with simultaneously

low emittances allows an ERL to deliver unprecedented beam parameters.

CBETA has been constructed at Cornell University’s Wilson Laboratory. This

is a collaboration with BNL, and will be the first multipass ERL with a Fixed

Field Alternating (FFA) lattice. It serves as a prototype accelerator for electron

coolers of Electron Ion Colliders (EICs), and the EIC project proposed at BNL

will benefit from this new accelerator [5]. Fig. 1.1 shows the design layout of
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CBETA. At full operation, CBETA is a 4-turn ERL with maximum electron beam

energy of 150 MeV. This has been achieved by first accelerating the electron

beam to 6 MeV by the injector (IN). The beam is then accelerated by the Main

Linac Cryomodule (MLC) cavities (LA) four times to reach 150 MeV, then the

beam is decelerated four times down to 6 MeV before stopped (BS). The beam

passes through the MLC cavities for a total of eight times, each time with an

energy gain of ±36 MeV. The field energy in the cavities is transferred to the

beam during acceleration, and recovered during deceleration. Transition from

acceleration to deceleration is achieved by adjusting the path-length of the forth

recirculation turn to be an odd multiple of half of the RF wavelength. The path-

length of all the other turns is exactly an integer multiple of the RF wavelength.

CBETA can also operate as a 3-turn, 2-turn, or 1-turn ERL with properly ad-

justed configuration. In July 2019, 1-turn energy recovery was achieved with a

recovery efficiency of 99.6% up to 8 µA [6]. In December 2019, 4-turn recircula-

tion was achieved.

Figure 1.1: Layout of CBETA. The sections labeled (IN) and (LA) are the injector
and MLC cavities respectively. Sections (FA), (TA), (ZA), (ZB), (TB), and (FB)
form the FFA beamline which can accommodate four recirculating orbits with
energy ranging from 42 MeV to 150 MeV. Sections (SX) and (RX) are splitters
which control the path-length of each recirculation pass.
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1.2 Beam Breakup Instability

Unlike conventional storage rings with non-superconducting cavities, the beam

current in ERLs is no longer limited by the power consumption in the cavi-

ties. However, there will be new, higher limits to the current. These are Higher

Order Modes (HOMs) heating and the recirculative Beam Breakup (BBU) insta-

bility. BBU occurs in recirculating accelerators as the recirculated beam bunches

interact with the HOMs in the accelerating cavities. The most relevant HOMs

for BBU are the dipole HOMs which give a transverse kick to the bunches. The

off-orbit bunches return to the same cavity and excite the dipole HOMs which

can kick the subsequent bunches further in the same direction. The effect can

build up and can eventually result in beam loss. With a larger beam current

the effect becomes stronger, so BBU is a limiting factor on the maximum achiev-

able current, called the threshold current Ith. With multiple recirculation passes,

bunches interact with cavities for multiple times, and the Ith can significantly

decrease [7]. The low and high target currents of CBETA are 1 mA and 40 mA

respectively, for both the 1-turn mode and 4-turn mode. Simulations are re-

quired to check whether the Ith is above these target values.

1.3 Coherent Synchrotron Radiation

Synchrotron radiation occurs when an electron traverses a curved trajectory,

and the radiation emitted can give energy kicks to the other electrons in the

same bunch. While the high frequency components of the radiation spectrum

tend to add up incoherently, the low frequency components, with wavelength

on the order of the bunch length, can add coherently. These are termed incoher-

3



ent and coherent synchrotron radiation respectively (ISR and CSR). While the

total intensity for ISR scales linearly with the number of charged particles (Np),

it scales as N2
p for CSR.

For an ERL which aims for high beam quality like CBETA, CSR can pose

detrimental effects on the beam bunches, including energy loss, increase in en-

ergy spread, and potentially the micro-bunching instability [24]. It is therefore

important to run CSR simulations for CBETA, and investigate potential ways

for mitigation.

1.4 Orbit Correction and Tolerance Study

Orbit correction simulation allows us to find the tolerance of an accelerator lat-

tice subjected to various errors. Common error sources include non-ideal mag-

net positioning and alignment, undesired multipole field strengths, and offsets

of Beam Position Monitors (BPMs). In order to fix the altered orbits, dipole

kickers as correctors are allocated throughout the lattice. A common approach

for orbit correction is the Singular Value Decomposition (SVD) optimization,

which calculates the linear response matrices between the BPMs and correctors,

and minimizes the residual orbit in the least square sense [35].

In CBETA there are BPMs and correctors located within the FFA beamline

and all the splitter lines. Since there are four coexisting orbits in the FFA, the

correction scheme must aim to correct all four of them simultaneously. As the

error magnitudes increase, the beam size and emittance after correction could

still undesirably increase. Our goal is to find the “individual limit” of each error

type beyond which the increases become unacceptable. Typically this limit is

4



reached before the orbits become un-correctable. Similarly we can also find the

“combined limit” of various errors. The definition of these limits and further

details are included in the orbit correction chapter.

1.5 Bmad

Cornell University has developed a simulation software called Bmad to model

relativistic beam dynamics in customized accelerator lattices [8]. Having been

developed to model the storage ring CESR at Cornell, Bmad has also been used

to design and optimize the CBETA lattice.

Most simulation results presented in this thesis come from Bmad. For orbit

correction, Bmad can readily calculate the response matrices from the correctors

and BPMs assigned by the users. The required SVD optimizer has also been im-

plemented in Bmad. With the ability to track charged bunches through a lattice,

Bmad has subroutines established to specifically simulate BBU and CSR effects.

While BBU simulation tracks a beam of bunches through recirculated cavity(s)

and calculates the HOM voltage(s) over time, CSR simulation tracks one bunch

with a large number of particles and calculates the CSR energy kicks within the

bunch for every time step. Both simulations involve several parameter choices,

and can be computationally intensive. Further simulation details are included

in the respective chapters of BBU and CSR.
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CHAPTER 2

CBETA

Fig. 1.1 shows the main sections of CBETA. This chapter briefly describes

the sections which are important to the topics in this thesis, including the MLC

cavities, FFA beamline, and the splitter sections. The detailed descriptions on

all the components can be found in [1].

2.1 MLC cavities

Fig. 2.1 shows the CBETA MLC, which comprises of six 7-cell SRF cavities with a

fundamental frequency of 1.3 GHz. Fig 2.2 shows the design of one such cavity.

Figure 2.1: The CBETA MLC during commissioning in May 2017. Image credit
to [5].

Each cavity is powered via an individual solid state amplifier, with an aver-

age power of 5 kW per amplifier. To enable high current ERL operation, HOM

absorbers are placed in between the cavities to suppress the HOMs down to typ-

ically Q ∼ 104. Details on the HOM spectra are discussed in the BBU chapter.
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Figure 2.2: Design of one 7-cell cavity in the MLC. Image credit to [34].

2.2 FFA beamline

The FFA beamline consists of the FFA arcs (FA and FB), the transition sections

(TA and TB), and the straight sections (ZA and ZB). Each of these sections

consists of multiple FFA cells, and each cell comprises of one pure focusing

quadrupole magnet (QF) and one defocusing quadrupole magnet with an ad-

ditional dipole component (BD). In reality the magnets are permanent Halbach

type magnets with primarily dipole and quadrupole field components in the

good field region [30]. Fig. 2.3 shows the orbits of the four design energies in-

side the first half of the FFA beamline. Section FA consists of 16 periodic cells

(See Fig. 2.4), and the orbits and beam optics and also periodic. The periodicity

breaks at the transition section TA, and all four orbits reach zero value at the

straight section ZA.

Fig. 2.5 shows the cross sections of the QF and BD magnets in FA. The de-

tailed calculation of the magnetic fields can be found in [30]. Because the four or-

bits have different horizontal offsets, they see different equivalent dipole fields.

Note that the FFA lattice accepts beams with a continuous range of energies,

not just the four design energies. Bmad simulations show that the acceptable

energy ranges from 38 MeV to 240 MeV.

The FFA beamlinie plays an important roles in all topics of the thesis. For
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Figure 2.3: (Color) The orbits of the four design energies inside the first half of
the FFA beamline, including FA, TA, and ZA. The second half (not included)
has approximately mirrored orbits and optics.

Figure 2.4: The top view of one FA cell showing the four orbits with energy
ranging from 42 MeV to 150 MeV. The cell bends the reference geometry by 5
degrees.

BBU instability, the threshold current depends on the beam optics and the nat-

ural chromaticities of the four orbits. For CSR, the bunches undergo the most

curved trajectories in the FA and FB section, which contribute significant CSR

effects. For orbit correction, majority of the BPMs and orbit correctors are lo-

cated in the beamline.
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Figure 2.5: (Color) The cross sections of the QF, a pure focusing Halbach
quadrupole magnet (left), and the BD, a defocusing quadrupole magnet with a
dipole component (right) in the FA section. Both magnets have window framed
electromagnets as correctors, which can provide a normal dipole (red areas) and
a normal quadrupole (green areas) field.

2.3 Splitter sections

The two splitter sections SX and RX consist of non-permanent dipole and

quadrupole magnets. Fig. 2.6 shows the design layout of the SX section. To

distinguish between the four energy passes, the four lines in SX (RX) are named

S1 (R1) for 42 MeV, S2 (R2) for 78 MeV, S3 (R3) for 114 MeV, and S4 (R4) for

150 MeV. One primary function of the splitters is to adjust the recirculation path

length of each pass. This allows the operators to switch between the 1-turn,

2-turn, 3-turn, and 4-turn mode of CBETA.

Figure 2.6: The top view of the SX splitter section. The red blocks are dipole
magnets, and the blue ones are quadrupole magnets. From bottom to top, the
four lines are named S1, S2, S3, and S4.
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During the design phase of CBETA, the orbits and beam optics in the MLC

and FFA beamline are fixed first. Therefore, another primary function of the

splitters is to steer the orbits and match the optics of the four beams between

the MLC and FFA. Each splitter line has 8 quadruple magnets, and for each

energy pass there are 6 optical parameters to be matched to: βx, αx, βy, αy, ηx,

and η′x (Twiss parameters and dispersion). Fig. 2.7 shows an optical solutions

found for the S4 line using a numerical optimizer in Bmad.

Figure 2.7: An example S4 splitter line configuration with optics matched into
the FFA arc using 8 quadrupole magnets.

Another important quantity to be concerned is the r56 contribution from the

FFA beamline. For each recirculation pass to be isochronous, we need the total

r56 to be zero. This requires the r56 contribution from the SX and RX lines to

cancel the FFA contribution for each of the four design energies. For instance,

the r56 contribution from the FFA of the 42 MeV orbit is -19.9 mm, so S1 and

R1 together need to contribute +19.9 mm. This adds one extra constraint on the

optics matching for each splitter line, and therefore increases the difficulty to

find an optical solution. A few quadrupole magnets with greater gradient (20

T/m) are sometimes required.

In terms of the topics in this thesis, the splitter sections are important to orbit

correction and BBU instability. Chapter IV will show that the freedom in vary-
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ing beam optics allows potential improvement of the BBU threshold current.

2.4 4-turn design optics and beam tracking

Fig. 2.8 shows the full beam optics of the 4-turn lattice. The beta functions and

dispersion are computed about the design particle. The transverse beam sizes

and bunch length come from tracking a “GPT beam” of 100k particles starting

from the end of the LINAC pass 1 (42 MeV). The GPT beam comes from GPT

tracking which accounts for space charge effect at low energy, up to 42 MeV. The

phase space distributions and further details can be found in the CSR chapter.

Figure 2.8: The beam optics of the full 4-turn lattice.
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CHAPTER 3

BEAM BREAKUP INSTABILITY

3.1 BBU theory V.S BMAD Simulation

We will first revisit the general BBU theory developed in [7] and [17] to check

the validity of BMAD simulations by comparing the results to the theory pre-

dictions. Benchmarking with numerical code has been performed in [7] for the

most elementary BBU configuration (one dipole-HOM with one recirculation)

using the recirculation arc time tr as the variable. However, CBETA is a multi-

pass ERL with multiple cavities. To ensure Bmad simulation results are repre-

sentative, we also benchmark the code with more complicated configurations

with various tr. This has not been done in previous publications. Furthermore,

by using similar lattice and HOM parameters across the configurations, one

could compare the effect on the Ith in a consistent fashion. We believe these

benchmarking results will be important to CBETA as well as future multi-pass

ERLs which concern BBU.

We will focus on four configurations (cases) of which analytic formulas for

Ith are available from [7] and [17]:

Case A: One dipole-HOM with Np = 2,

Case B: One dipole-HOM with Np = 4,

Case C: One dipole-HOM in two different cavities with Np = 2, and

Case D: Two polarized dipole-HOMs in one cavity with Np = 2.

12



Since the theory assumes thin-lens cavities, it is inaccurate to benchmark

with the CBETA lattice whose cavities are each 1 m long. Instead we make

a simple lattice with only thin-lens cavities and a recirculation arc with fixed

optics. The following subsections compare the simulation results to theoretical

formulas for the four cases.

3.1.1 One dipole-HOM with Np = 2

Case A is the most elementary case for BBU. Assuming that the injected current

I0 consists of a continuous stream of bunches with a constant charge and sepa-

rated by a constant time interval tb, then the time-dependent HOM voltage V (t)

must satisfy, for any positive integer n, the recursive equation [7]:

V (ntb + tr) = I0
e

c
tbT12

∞∑
m=0

W (mtb)V ([n−m]tb), (3.1)

in which W (τ) is the long range wake function characterized by the HOM pa-

rameters:

W (τ) =

(
R

Q

)
λ

ω2
λ

2c
e−(ωλ/2Qλ)τ sin(ωλτ). (3.2)

All the related symbols are listed in Table 3.1, which closely follows the

nomenclature used in [7]. The bunches arrive in the cavity at times ntb, where

they receive a transverse kick proportional to V (ntb), which then describes the

transverse offset of successive bunches in the return loop. The Fourier transform

Ṽ Σ(ω) = tb

∞∑
n=−∞

V (ntb)e
iωntb (3.3)

is zero for every ω except when the following dispersion relation is satisfied:

1

I0

= D(ω), (3.4)
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D(ω) =
e

c
tbT12e

iωnrtbw(δ, ω). (3.5)

Symbol SI Unit Definition or Meaning
e C Elementary charge
c m/s Speed of light
tRF s Fundamental RF period
tb s Injected bunch time spacing (> tRF)
tr s Recirculation arc time (typically > tb)
nr - nr = Top[tr/tb], integer
δ - δ = (tr/tb − nr) ∈ [0, 1)

For an ERL δ ≈ 0.5
ωλ rad/s HOM radial frequency

(R/Q)λ Ω normalized HOM Shunt Impedance
Qλ - HOM quality factor
T12 s/kg The T12 element of the transfer

matrix of the recirculation arc
W (τ) V/mC Long range wake function (see Eq. (3.2))
w(δ, ω) V/mC Sum over all wakes (see Eq. (3.6))
I0 A Measured current at the injector
ε - ε = (ωλ/2Qλ)tb
κ CsΩ/m2 κ = tb(e/c

2)(R/Q)λ(ω
2
λ/2)

Table 3.1: A list of important quantities in the elementary BBU theory (one
dipole-HOM, Np = 2). ε is a measure of HOM decay in the time scale of tb.

The function w(δ, ω) sums the contribution of all the long range wakes in the

frequency domain:

w(δ, ω) ≡
∞∑
n=0

W ([n+ δ]tb)e
iωntb . (3.6)

As a current, I0 is a real number, and for a fixed I0 there is a set of complex

values of ω which satisfy Eq. (3.5). For a small I0 the voltage is stable, which

means all the ω values have a negative imaginary part. If we keep increasing

I0, eventually instability will occur due to great excitement. This is reflected

by the ωs that have positive imaginary parts. At the onset of instability, one

of the ω is crossing the real axis (i.e. is real), and the corresponding current I0
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is then the threshold current Ith. While it’s difficult to find the ω values for a

given I0, it’s easy to compute D(ω) given a real ω. Most values computed will

be complex and therefore correspond to an unphysical I0. The largest real value

ofD(ω) determines the Ith. Due to the periodicity and symmetry in Eq. (3.5), it is

sufficient to check ω in just [0, π/tb) or any equivalent interval. Mathematically

this can be written as:

1

Ith
= max

ω
[D(ω), D(ω) ∈ <, ω ∈ [0, π/tb)]. (3.7)

Eq. (3.5), combined with Eq. (3.7), is called the “general analytic formula” to

determine the Ith for case A. For a representative comparison between theory

and simulation, we check how Ith varies with tr while holding tb constant. The

matrix element T12 and the HOM properties are also held constant. Fig. 3.1

shows the comparison result. Clearly BMAD’s simulation agrees well with the

general analytic formula, in both the regions with a high Ith (the crest) and low

Ith (the trough).

If the HOM decay is insignificant on the time scale of tb (ε� 1), then Eq. (3.5)

can be simplified by linearization in small ε. We call the resulting formula the

“linearized analytic formula”:

D(ω) = −κ
2

eiωtrT12

(ω − ωλ)tb + iε
. (3.8)

Similar to the general formula, the linearized formula does not provide a closed

form for Ith, so we still need to apply Eq. (3.7) to find the Ith as the smallest real

I0 over ω ∈ [0, π/tb).

The usefulness of the linearized formula will be shown when Np > 2. On

the other hand, if the HOM decay is insignificant also on the recirculation time

scale (nrε� 1), then the formula can be further simplified into the “approximate

analytic formula”:
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Ith =


− ε
κ

2
T12 sin(ωλtr)

if T12 sin(ωλtr) < 0

2
κ|T12|

√
ε2 + ( tb

tr
)2 ×minmod(ωλtr, π) otherwise,

(3.9)

in which

minmod(x, y) = min[mod(x, y), y −mod(x, y)]. (3.10)

It is worth checking the applicability of the linearized and the approximate for-

mula. This has been done in [7] for a case with ε = 0.00048 and nr = 6 to 7. Their

result shows great agreement with the two non-general formulas in the trough

region, but not in the crest region. Here we test a new case with ε = 0.024 and

nr = 2 to 3, and the results are plotted together on Fig. 3.1.

Figure 3.1: (Color) Comparison of the Ith obtained from different analytic formu-
las and BMAD simulation for Np = 2. Parameters used: ctRF = 0.5m, tb = 50tRF,
ωλ/2π = 1 GHz, Qλ = 100, (R/Q)λ = 104Ω, T12 = −10m/(1GeV/c).

We again observe that the linearized formula agrees well with the general

formula in the trough region, but the approximate formula agrees well only

in a smaller region around the minimum of the trough. The inaccuracy of the

approximate formula in the trough region comes from the increased value of
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nrε. With HOM dampers, Qλ is typically on the order of 104, so for an ERL

with continuous wave operation (tb = 2tRF/Np, filling all the RF buckets), ε� 1

is usually guaranteed. However, nr (the harmonic number of an ERL, 343 for

CBETA) can be a large number depending on the recirculation lattice, so nrε� 1

is not guaranteed. This means the approximate formula needs to be applied

with caution. Note that the top case in Eq. (3.9) corresponds to the Ith in the

trough region, and can be rewritten as:

Ith =
−2c2

e(R/Q)λQλωλ

1

T12 sin(ωλtr)
. (3.11)

This formula has been derived in several works regarding BBU [18][19][20].

Despite its limited applicability, the formula gives us insight on how to avoid

a low Ith. Besides suppressing the HOM quality factor Qλ, one can also adjust

the recirculation time to avoid sin(ωλtr) ≈ +1 (or −1) when T12 is negative (or

positive). Theoretically Ith can be infinite by making T12 = 0. Unfortunately this

can not be achieved in general with multiple cavities and Np > 2, since the T12

between each pair of multipass cavities all needs to be zero. In reality the T12

also depends on the length of the cavity, which will be discussed in section III-E.

The strategies to improve the Ith in general will be covered in section V.

3.1.2 One dipole-HOM with Np = 4

In case A (Np = 2) we see that three analytic formulas exist: the general, lin-

earized, and approximate formula. For a more general case with one dipole-

HOM yet Np > 2, the general formula involves finding the maximum eigen-

value of a complex matrix [7]. For accurate calculation this requires a scan over

ω at very small steps, and is often numerically difficult. Therefore we will apply
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the linearized formula instead of the general formula. Similar to Eq. (3.8), the

linearized formula is [7]:

D(ω) = −κ
2

1

(ω − ωλ)tb + iε

Np∑
J=1

Np∑
I=J+1

eiω(tI−tJ )T IJ , (3.12)

in which I and J are the cavity pass index, (tI − tJ) is the recirculation time

from pass J to I , and T IJ is the corresponding T12 matrix element. To find the

Ith we again apply Eq. (3.7), and no complex matrix is involved. The approx-

imate formula also exists, but works only for the “trough regions” in which∑Np
J=1

∑Np
I=J+1 sin(ω(tI − tJ))T IJ ≤ 0:

Ith =
−2c2

e(R/Q)λQλωλ

1∑Np
J=1

∑Np
I=J+1 sin(ωλ(tI − tJ))T IJ

. (3.13)

Figure 3.2: (Color) Comparison of the Ith obtained from the linearized formula
and BMAD simulation for Np = 4. Parameters used are the same as in Fig. 3.1,
with T12 = T IJ and tr = tI − tJ for any I = J + 1. The trough regions are where
the approximate formula (red triangles) is evaluated.

Fig. 3.2 shows the comparison between BMAD simulation and the two ana-

lytic formulas. In contrast to the case with Np = 2 (Fig. 3.1), we now have three

instead of one trough regions in one period. The number, depth, and location of

the troughs depend on the signs and magnitudes of T IJ , or the optics of multi-

ple recirculation passes. We again observe great agreement between simulation
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and the linearized formula at the trough regions, and the approximate formula

agrees well only around the the minimums.

3.1.3 One dipole-HOM in two different cavities with Np = 2

The complexity of this case comes from the interaction between the two HOMs

via different recirculation passes. Fig. 3.3 shows all the possible ways the HOMs

excite themselves and each other. For example, the HOM of cavity 1 (V1) can

excite itself via recirculation (via the green arrow labeled T 21
11 ). It can also excite

the HOM of cavity 2 (V2) in the same pass (via the blue arrows labeled T 11
21 for

pass 1 and T 22
21 for pass 2).

Figure 3.3: (Color) Illustration of the case C configuration. Vj denotes the HOM
of cavity j, and T IJij is the T12 from HOM j of pass J to HOM i of pass I . Arrows
with the same color indicate that the corresponding T IJij are assumed the same
in order to derive Eq. (3.14).

Similar to Case B, the general formula involves calculating the eigenvalues

of a complex matrix. However, the formula greatly simplifies if the two HOMs

have identical characteristics, and the lattice has symmetric optics (T 22
21 = T 11

21

and T 21
22 = T 21

11 ) [7]:
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D(ω) = −κ
2

eiωtr [T 21
11 ±

√
T 21

12 (T 21
21 + 2e−iωtrT 11

21 )]

(ω − ωλ)tb + iε
. (3.14)

Comparing to Eq. (3.8) we see the equivalent T12 becomes (T 21
11 ±√

T 21
12 (T 21

21 + 2e−iωtrT 11
21 )), which has two possible values for a fixed ω. Since

Eq. (3.14) is a linearized formula, to find the Ith we need to apply Eq. (3.7) while

considering both values. In general one value gives a greater |I−1
0 |, which leads

to the Ith. Eq. (3.14) has several peculiarities which will be explained by the

following three cases with special optics, and Fig. 3.4 shows the theory and sim-

ulation results for these cases.

Case Optics
C1 T 21

12 = 0
C2 T 22

21 = T 11
21 = 0

C3 T 21
21 = 0

Table 3.2: The three subcases for case C with special optics.

Figure 3.4: (Color) Comparison of the Ith obtained from the linearized formula
and BMAD simulation for the case C1 (top curve), C2 (middle), and C3 (bot-
tom). The HOM properties are the same as in case A, and the optics are chosen
carefully so T 21

11 = −10m/(1GeV/c) for all the three subcases.
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In the case C1, T 21
12 = 0, which means that the second HOM (j = 2) can

not excite the first HOM (j = 1). This is shown clearly by the red arrow in

Fig. 3.3. Even though the first HOM can excite the second HOM in this case,

there is no feedback from the second HOM. The two HOMs only feedback to

themselves. The Ith is therefore as large as that of with one single cavity only.

Eq. (3.14) supports this argument since the equivalent T12 is now simply T 21
11 ,

which agrees with Eq. (3.8) in the case A. The simulation results again agree

well at the trough regions, as observed for all the linearized formulas before.

For the case C2, each HOM can still excite itself directly through T 21
ii (the

green arrows in Fig. 3.3). However, the two HOMs can now excite each other

via recirculation through T 21
12 (the red arrow) and T 21

21 (the orange arrow). This

mutual excitation results in extra feedback, and changes the equivalent T12 to

be (T 21
11 ±

√
T 21

12 T
21
21 ), which is independent of ω. This means the Ith occurs at

the same ω as in the case C1, but the value is scaled down by a constant factor

depending on
√
T 21

12 T
21
21 . The scaling effect is shown by the top two curves in

Fig. 3.4. Note that if we swap the HOM index i and j, the equivalent T12 stays

the same.

For the case C3 we have T 21
21 = 0. The two HOMs still excite other (via

orange and blue arrows in Fig. 3.3), but not symmetrically as in the case C2. The

bottom curve of Fig. 3.4 shows the corresponding Ith profile, and the location

of the trough regions clearly shifts from the two previous cases. This shift is

expected due to the extra e−iωtr term in Eq. (3.14). The crest regions might have

vanished as we choose between the two quadratic values for greater |I−1
0 |. The

choice at different tr varies with on the e−iωtr term, which allows us to stay at

the trough region given by one of the two values. The overall agreement with
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the simulation results also supports that the crest regions, at which linearized

formula typically disagrees, have vanished.

3.1.4 Two polarized dipole-HOMs in one cavity with Np = 2

All the cases discussed so far assume that the HOMs are polarized in the hor-

izontal direction only. With cylindrical symmetry there exists a vertical HOM

for each horizontal HOM, and the HOM pair has identical HOM characteristics

except for the polarization angle. If the recirculation lattice has coupled beam

optics between the two transverse phase spaces (i.e. nonzero T14 and T32), then

the two HOMs could excite each other via recirculation. Similar to case A, we

consider the simplest configuration with one cavity and Np = 2. For the case

with ε� 1 and nrε� 1, the approximate formulas for the Ith are [17]:

Ith = min(I±), (3.15)

I± =


− ε
κ

2
T± sin(ωλtr+ν±)

if it is < 0

2
κT±

√
ε2 + ( tb

tr
)2 ×minmod(ωλtr + ν±, π) o/w,

(3.16)

T±e
iν± =

T12 + T34

2
±

√(
T12 − T34

2

)2

+ T14T32, (3.17)

in which T±, ν± ∈ < and T± > 0.

Note that Eq. (3.15) is essentially Eq. (3.9) with T12 replaced by T±, and ν±

added to ωλtr. From Eq. (3.15) we see there are two candidates (I+ and I−) for the

Ith, and the nature of coupling (i.e. the matrix elements in Eq. (3.17) determines

which one is the Ith at different tr. We define ∆ν = |ν+−ν−|, which measures the

phase shift between I+(tr) and I−(tr). To compare the formula with simulation
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results, we again focus on three cases with specified optics, listed in table 3.3

below.

Case T12 T14 T32 T34 T−/T+ ∆ν
D1 x 0 0 −x 1 π
D2 x 3x −2x 4x 1 4.97
D3 x (2 +

√
6)x (−2 +

√
6)x 3x 13.9 2π

Table 3.3: The three subcases for case D with specified optics. We set x =
−10m/(

√
2GeV/c), and the rest of the matrix elements are set to meet symplec-

ticity, consistent with [17]. The optics for case D3 was specifically chosen to
obtain ∆ν = 2π.

Figure 3.5: (Color) Comparison of the Ith obtained from the approximate ana-
lytic formula (Eq. (3.15)) and BMAD simulation for case D1. The two candidates
for Ith (I± from Eq. (3.16)) are also plotted. Parameters used: tb = tRF = 1/1.3
GHz, ω1 = ω2 = 2π × 2.2 GHz, Q1 = Q2 = 100, (R/Q)1 = (R/Q)2 = 104 Ω.

Fig. 3.5 compares the Ith obtained from Eq. (3.15) and BMAD simulation for

the case D1. To study the behavior of coupling, the two candidates I±(tr) are

also plotted. Note that both I±(tr) curves have distinct crest and trough regions

as in case A. The two curves are ∆ν = π out of phase, causing the Ith to always

stay at the trough regions. This is expected for two reasons. First, the lattice

has no coupling (T14 = T32 = 0), so the two HOMs do not excite each other.

Mathematically we see T+ = |T12| and T− = |T34|. The second reason is about
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the physical difference between the trough and crest region. The trough region

has lower Ith because a particle with positive x offset receives positive kick in

x after recirculation. In the crest region the particle instead receives a negative

kick in x, resulting in a more tolerable Ith. Since we have T12 = −T34 for sub-

case 1, when x motion benefits from the crest region, y motion suffers from the

positive feedback at the trough region, and vice versa. The Ith occurs when ei-

ther x or y motion becomes unstable, not both. If we instead had T12 = T34, the

two candidate curves will overlap each other (in phase with equal magnitude),

indicating that x and y motion are identical. In other words, without optical

coupling the Ith either follows Fig. 3.1 (with distinct crest and trough regions)

or Fig. 3.5 (with trough regions only). The BMAD simulation agrees with the

approximate formula well, especially in the trough regions of I+(tr). Reasons

for the slight overestimate of I−(tr) at the crest region are to be investigated.

Figure 3.6: (Color) Comparison of the Ith obtained from the approximate ana-
lytic formula (Eq. (3.15)), the two candidates (Eq. (3.16)), and the BMAD simula-
tion for the case D2. The parameters used are identical as in the case D1, except
for the optics.

Fig. 3.6 shows the comparison for the second subcase. The Ith for this par-

ticular set of optics has been checked in [17] for a specific tr value, and here we
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check against various tr values with BMAD simulation. Similar to the case D1,

case D2 has T+ = T−, but the different value of ∆ν drastically changes the Ith

behavior at different tr. Since ∆ν 6= π, the crest regions of the two candidates

partially overlap, giving a peak region to the Ith curve. Since coupling exists

now, the two transverse motions affect each other, and should not be treated

independently. Around the peak, the motions together benefit from the crest

regions, resulting in a greater Ith. Again, BMAD simulation agrees well with the

approximate formula.

Figure 3.7: (Color) Comparison of the Ith obtained from the approximate ana-
lytic formula (Eq. (3.15)), the two candidates (Eq. (3.16)), and the BMAD simula-
tion for the case D3. The parameters used are identical as in the case D1, except
for the optics.

Lastly, Fig. 3.7 shows the comparison for the case D3. The optics are carefully

chosen such that ∆ν is 2π, or equivalently zero. This causes the two candidate

curves to be in phase, and the ratio I+(tr)/I−(tr) = T−/T+ remains constant.

The Ith curve will always follow the “smaller” candidate curve (I−(tr) with our

choice of optics). Recall that in the case D1 the two candidate curves would

overlap (and be in phase) if T12 and T34 have the same sign. One might thus

wonder what is the effect of coupling in the case D3. In contrast to the case D2
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in which coupling changes both the magnitude and phase of the two curves,

coupling here only changes their magnitude. The Ith magnitude therefore en-

tirely increases or decreases at all tr depending on the beam optics.

The three cases above have shown that optical coupling can strongly affect

the Ith. However, in reality it can be difficult to achieve specific optics in order to

reach a high Ith. For a more general case in BBU with more HOMs and Np > 2,

neither the linearized formula nor the approximate formula exists. The general

formula becomes more difficult to apply numerically, so we rely on simulation

to find the Ith. The agreement with the analytic formulas in all the example cases

makes us confident to use BMAD to calculate the Ith of CBETA.

3.1.5 Comment on recirculation T12

Let us refocus on the most elementary BBU case with one HOM and Np = 2

(Case A). Since the BBU theory derived in [7] assumes a thin-lens cavity, the

T12 in the formulas corresponds to the T12 of the recirculation beamline. This is

however an approximation since particles undergo transverse motion through

a cavity with nonzero length. Consequently the equivalent T12 would depend

on other matrix elements (T11, T21, T22, etc.) of the recirculation beamline, as

well as the transfer matrix of the cavity itself. This effect is included in BMAD

simulation, with the cavity transfer matrix derived in [21], and the transverse

HOM kick given instantly at the center of the cavity. Fig. 3.8 shows the Ith for

case A with varying cavity length. The optics of the recirculation beam line is

held constant. In our case, increasing cavity length lowers the equivalent |T12|,

resulting in a greater Ith for all tr. Physically this reflects the transverse focusing
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effect of the cavity.

Figure 3.8: (Color) Comparison of the Ith obtained from the BMAD simula-
tion for case A with different cavity length. Parameters used are identical as
in Fig. 3.1.

In reality the HOM kick is not instant at a specific point of the cavity, but

gradual depending the time varying HOM field. A more realistic simulation

would therefore integrate the field contribution from both the fundamental

mode and the HOM to calculate the exact particle trajectory through the cav-

ity. Since the HOM field depends on the interaction history of the traversed

beam, the simulation can be computationally intensive.

3.2 Scaling of multi-pass Ith with Nr

The scaling of Ith over the number of linac pass Np was estimated to be

Ith(Nr) ≈
1

Nr(2Nr − 1)
Ith(1) (3.18)

in [7] for multi-turn accelerators with Np = 2Nr. Here we revisit the scaling law

and focus on the case with symmetric ERLs. Symmetry means that the optics
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and time of flights of the accelerating passes are mirror symmetric to those of

the decelerating passes. Assuming there is only one dipole HOM, the formula

for the multi-pass Ith can be written as, from the BBU theory:

Ith =
2ε

κ

1

maxω ΣS
, ΣS > 0. (3.19)

ΣS = −
Np∑
J=1

Np∑
I=J+1

sin(ω(tI − tJ))

√
βIβJ
pIpJ

sin(φIJ), (3.20)

in which βI and pI are the beta function and momentum at pass I , and φIJ is

the phase advance from pass J to pass I . For an ERL we have the following

constraints:

Np is even. (3.21)

Np is even.(tI+1 − tI) =


(mI + 1

2
)× tRF if I = Np/2

mItRF otherwise (mI ∈ N).

(3.22)

For a symmetric ERL we have additional constraints:

tI + tNp−I+1 = const ∀I. (3.23)

βI = βNp−I+1 ∀I. (3.24)

pI = pNp−I+1 ∀I. (3.25)

φIJ = φ(Np−J+1)(Np−I+1) ∀I > J. (3.26)

The goal here is to obtain the scaling law of the minimum Ith for a symmetric

ERL with adjustable phase advances φIJ and fixed tI , βI , and pI . We define:

min[Ith] =
2ε

κ
(max
ω,φIJ

ΣS)−1, ΣS > 0. (3.27)

For simplicity we choose
√
βI/pI = constant. With σx ≈

√
βxεn/(βγ), this

means the beams size is the same for all I . The symmetry constraint on φIJ re-

duces the number of free phases fromNp(Np−1)/2 toNp/2. In general, each term
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in Eq. (3.27) can be positive or negative depending on the values of (ω, φIJ), and

the minimum Ith occurs when the sum of these terms, neglecting the minus sign

at the front, is the most negative. Fig. (3.9) below shows the resultant min[Ith]

with different Np and ωλ after optimization using Mathematica.

Figure 3.9: (color) Scaling of the min[Ith] over Np for symmetric ERLs with dif-
ferent ωλ. Parameters: ctRF = 0.5m, tb = tRF, Qλ = 100, (R/Q)λ = 104 Ω,
tI+1 − tI = 100tRF (with an additional 1

2
tRF for I = Np/2), βI = 10m, and

pI ≈ 1GeV/c for all I .

With no prediction it turns out that the minimum Ith closely follow a new

scaling law:

min[Ith(Nr)] ≈
( 1

Nr

)2
min[Ith(1)]. (3.28)

Instead of the estimated value of 1/Nr(2Nr−1) in [7], the scaling factor for the

min[Ith] for a symmetric ERL is found to be just (1/Nr)
2. While the exact scaling

factor requires rigorous mathematical proof, the new scaling factor provides

more insight into the Ith scaling for symmetric ERLs.

Note that the previous factor in [7] was estimated to be 1/Nr(2Nr − 1) be-

cause there are Nr(2Nr − 1) terms in Eq. (3.20). However, due to the symmetry

constraints, the number of distinct terms is reduced to N2
r , which happens to
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correspond to the new scaling factor of (1/Nr)
2. While the previous factor was

obtained assuming that the multipass TIJs have very similar values for all I > J ,

the new scaling factor assumes mirror symmetrical optics. In a realistic ERL like

CBETA, the former assumption is more difficult to achieve than the latter one,

making the new scaling law more relevant. Since ERLs are usually designed

to achieve a high Ith instead of the minimum Ith, the applicability of the new

scaling law might first seem limited. However, with many cavities and HOMs,

the Ith tends to locate at the trough region, with a value close to the minimum

Ith. The new scaling law for the minimum Ith can therefore serve as a decent

approximation for the scaling of the actual Ith.

3.3 Effect of chromaticity on BBU Ith

When phase space filamentation is relevant, e.g. when the chromaticity (ξ =

dν/dδ) times the energy spread (σδ) is of order 1, the BBU instability can be

suppressed [16]. Here we estimate this effect on the effective T12 in the BBU

theory. The T12 seen by the design particle can be written as:

T12(δ = 0) =

√
β0β1

p0p1

sin(2πν0), (3.29)

in which β0 (β1) and p0 (p1) are the beta function and momentum at the be-

ginning (end) of the recirculation arc around the cavity, and 2πν0 is the phase

advance of the design particle.

For a particle with relative energy deviation δ, the phase advance is 2π(ν0 +

ξδ). Let ρ(δ) denote the δ distribution of the beam, then the effective T12 can be

written as:
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T̂12 =

√
β0β1

p0p1

∫ ∞
−∞

ρ(δ) sin(2π(ν + ξδ))dδ (3.30)

Assume ρ(δ) is a Gaussian distribution with (µ, σ) = (0, σδ), and apply the iden-

tity sin(A + B) = sin(A) cos(B) + cos(A) sin(B). The second term in the integral

then vanishes (odd in δ), yielding:

T̂12 =

√
β0β1

p0p1

sin (2πν0)√
2πσ2

δ

∫ ∞
−∞

e−δ
2/2σ2

δ cos(2πξδ)dδ (3.31)

= T12(δ = 0)
1√

2πσ2
δ

(
√

2πσ2
δe
−(2πξ)2σ2

δ/2) (3.32)

= T12(δ = 0)e−(2πξσδ)
2/2 (3.33)

Fig. (3.10) below shows the Ith results of tracking a Gaussian beam (with dif-

ferent σδ) through a “one-HOM, Np = 2” lattice (with different chromaticity ξ).

From the most elementary BBU case, we know Ith ∝ T−1
12 , so from the chromatic-

ity analysis above we expect:

Ith(σδ, ξ)/Ith(0, 0) = e−(2πξσδ)
2/2. (3.34)

Bmad simulation results agree with this prediction for various (σδ, ξ).

Since the factor e−(2πξσδ)
2/2 is smaller than unity, the effective T12 becomes

smaller in magnitude, resulting in a greater Ith all the time. For a multipass

lattice with multiple cavities, the effective T12 elements scale up differently de-

pending on the chromaticity of the return loops. Assuming that δ distribution

remains Gaussian-like, the Ith is expected to be greater than that with only the

design particle.

CBETA has no sextupoles, and the natural horizontal chromaticity ξ of its

four loops is approximately, from the lowest to the highest design energy, -85.6,
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Figure 3.10: (color) The Ith results from tracking a Gaussian beam (2000 particles
per bunch) through a “one-HOM,Np = 2” lattice with different (σδ, ξ). The three
curves correspond to the factor e−(2πξσδ)

2/2 with different ξ, and the black dots
are the simulation results. Parameters: same as in case A (See Fig. 3.1).

-25.3, -16.5, and -14.9. With an energy spread σδ of 10−3, the effective T12 ele-

ments of the lowest energy loop decreases by 13.4%. This means that the Ith

of CBETA 1-pass mode could increase up to 15.5% assuming only one dipole

HOM exists. To check this we tracked a beam with 3000 particles per bunch

through the CBETA 1-pass lattice with varying σδ and different HOM assign-

ments. Note that these BBU simulations with multiple particles per bunch are

computationally intensive comparing to the cases with single particle tracking.

Fig. (3.11) shows that for 50 different HOM assignments, the Ith increases as

σδ increases, and the result curves follow relatively close to the theory predic-

tion. The discrepancy in some of the curves is likely due to the non-Gaussian

distribution of the accelerated bunches. Regardless, the results indicate that

CBETA 1-pass can reach a higher Ith than predicted with single particle track-

ing. Moreover, the theory can be used to approximate the case of non-Gaussian

bunches. Although increasing the energy spread seems to help raising the Ith,
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Figure 3.11: (color) Fifty Ith results from tracking a beam (3000 particles per
bunch) through the CBETA 1-pass lattice with different σδ and HOM assign-
ments. Each of the 50 dashed curves corresponds to one specific HOM assign-
ment, and the thick curve is the theory prediction with a Gaussian beam.

it will eventually cause particle loss due to lattice dispersion. A large energy

spread can also cause undesired ERL operation at the cavities. The limit and

reliability of this method to increase the Ith therefore requires experimental test-

ing. For the 4-pass mode, the chromaticity magnitudes of the higher energy

loops are much smaller, giving a small chance to increase the Ith.

3.4 Bmad BBU Simulation Overview

The BBU program in Bmad requires a lattice with a recirculated cavity(s) with at

least one HOM assigned to it. There are six MLC cavities in the CBETA lattice,

and multiple HOMs can be assigned to each cavity. The following two subsec-

tions describe how the HOM data are generated, and how BMAD numerically

finds the Ith.
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3.4.1 HOM simulation and assignment

Each HOM is characterized by its frequency f , shunt impedance (R/Q), quality

factor Q, order m, and polarization angle θ. Since the MLC cavities have been

built and commissioned, one would expect direct measurement of HOM spec-

tra from the cavities. Unfortunately, the measured spectra contain hundreds

of HOMs, and it is difficult to isolate each individual HOM and compute their

characteristics, especially the R/Q value. Therefore, instead of direct measure-

ment, simulated HOM profiles using the known cavity structures are used. The

simulations were done by Nick Valles using the CLANS2 program, which can

model the fields and HOM spectrum within a cavity [9][10].

The CBETA MLC cavity shapes are characterized by a few ellipse parame-

ters, and in reality each cavity is manufactured with small unknown errors [9].

The fabrication tolerance requires the errors in these parameters to be within

±125 µm. For simplicity we use ε to denote the maximum deviation, i.e. ε =

125 µm for realistic CBETA cavities. In the CLANS2 program, random errors

are introduced to the modelled cavity shape within a specified ε. The cavity is

then compressed to obtain the desired fundamental accelerating frequency of

1.3 GHz. This procedure results in different HOM spectra for each cavity. Hun-

dreds of spectra were generated, each representing a possible cavity in reality.

The six MLC cavities have different manufacturing errors, therefore each BBU

simulation in Bmad assigns each cavity one of these simulated HOM spectra.

With multiple BBU simulations we can obtain a statistical distribution of Ith of

CBETA because the assigned HOM spectra will be different for each BBU simu-

lation.

To save simulation time we include only the 10 most dominant transverse
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dipole-HOMs (m = 1) from a pre-calculated spectrum. A dipole-HOM is con-

sidered more dominant if it has a greater figure-of-merit ξ = (R/Q)
√
Q/f [9].

Fig. 3.12 shows an example HOM assignment file with 10 dipole-HOMs for ε

= 125 µm. The zero polarization angles indicate that all these HOMs are hori-

zontally polarized which give no vertical kick to the beam bunches. We include

only horizontal HOMs and exclude any vertical HOMs. This is a reasonable

model since the cavities have cylindrical symmetry. For the rest of this paper,

HOM refers to dipole-HOM unless further specified.

Figure 3.12: An example file of 10 dominant horizontal dipole-HOMs assigned
to a single CBETA MLC cavity. The HOMs are simulated using CLANS2 pro-
gram with ε = 125 µm. Note that all the HOM frequencies are above the funda-
mental frequency 1.3 GHz.

3.4.2 Bmad simulation detail

The goal of BBU simulations is to find the Ith for a given multipass lattice with

HOMs assigned to the cavities. The BMAD program starts with a test current by

injecting beam bunches into the lattice at a constant repetition rate. The initial

bunches populating the lattice are given small transverse orbit offsets to allow

initial excitation of the HOMs. As the bunches pass through the cavities, the

momentum exchange between the bunches and the wake fields are calculated,
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and the HOM voltages are updated. The program records all the HOM voltages

over time and periodically examine their stability. If all HOM voltages are stable

over time, the test current is considered stable, and a greater current will be

tested. Since the repetition rate is held constant, this is equivalent to raising the

charge per bunch. In contrast, if at least one HOM voltage is unstable, the test

current is regarded unstable, and a smaller current will be tested. The program

typically converges to a Ith within 0.1% accuracy in under 30 iterations.

Since the BBU instability occurs because bunches interact with HOMs in the

cavities, detailed tracking in the recirculation arc is not required. To save sim-

ulation time we usually hybridize the arc elements into an equivalent transfer

matrix. The time advantage of hybridization is one to two orders of magnitude.

3.5 Bmad Simulation Result

As discussed, CBETA can operate in either the 1-turn or 4-turn mode, and each

of the 6 MLC cavities can be assigned with a set of HOM spectrum. Hundreds

of simulations with different HOM assignments were run to obtain a statistical

distribution of Ith for each specific CBETA design. We will investigate the fol-

lowing five design cases:

Case (1): CBETA 1-turn with ε = 125 µm

Case (2): CBETA 4-turn with ε = 125 µm

Case (3): CBETA 4-turn with ε = 250 µm

Case (4): CBETA 4-turn with ε = 500 µm

Case (5): CBETA 4-turn with ε = 1000 µm

The first two cases aim to model the reality since CBETA cavities have the
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fabrication tolerance of ± 125 µm. The latter three cases with greater fabrication

errors are simulated for academic interest. Results of all the cases are presented

as histograms in the following subsections. Note that some of the results have

been presented in [11].

3.5.1 CBETA 1-turn with ε = 125 µm

The design current of CBETA 1-turn mode is 1 mA (the low goal) and 40 mA (the

high goal). It’s important to note that these goals refer to the injected current,

so a 40 mA injected current corresponds to 80 mA for the 1-turn mode (Np = 2)

and 320 mA for the 4-turn mode (Np = 8) at the MLC cavities. Fig. 3.13 shows

that all 500 simulations results exceed the lower goal of 1 mA, and only one of

them is below 40 mA. This is a promising result for the CBETA 1-turn opera-

tion. We have to be unfortunate for the cavities to assume certain undesirable

combinations of HOMs for the current to not reach the high goal.

Figure 3.13: 500 BBU simulation results of Ith for the CBETA 1-turn lattice. Each
cavity is assigned with a random set of 10 dipole HOMs (ε = 125 µm). The blue
line indicates the higher design goal of 40 mA.
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3.5.2 CBETA 4-turn with ε = 125 µm

The design current of CBETA 4-turn mode is also 1 mA and 40 mA. Fig. 3.14

shows that for the 4-turn mode, 494 out of 500 simulations exceed the 40 mA

goal. This is again quite promising for the 4-turn operation, and for the few

cases with undesirably low Ith, we will discuss the potential ways to improve

them in the following section. Comparing to Fig. 3.13, the average Ith for the 4-

turn mode is 80.8 mA, much lower than the 179.4 mA of the 1-turn mode. This

is expected from the BBU theory, since more recirculation passes allow more

interaction between the HOMs and beam bunches, thus resulting in a smaller

Ith.

Figure 3.14: 500 BBU simulation results of Ith for the CBETA 4-turn lattice. Each
cavity is assigned with a random set of 10 dipole HOMs (ε = 125 µm).

3.5.3 CBETA 4-turn with ε ≥ 250 µm

It is interesting to see how Ith distribution changes with greater manufacture

errors for the 4-turn lattice. Fig. 3.15, Fig. 3.16, and Fig. 3.17 show the results

of 500 simulations for ε = 250 µm, ε = 500 µm, and ε = 1000 µm respectively. For
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simple comparison, table 3.4 summarizes the statistics of all the results. For ε =

250 µm, the minimum and average Ith are both higher than the ε = 125 µm case.

However, the low average Ith for ε = 1000 µm implies that a greater ε does not

always improve the Ith.

Fundamentally greater deviation in the cavity shape results in greater spread

in the HOM frequencies. This causes the HOMs across the cavities to act less

coherently when kicking the beam, thus potentially increases the Ith. However,

a greater deviation also tends to undesirably increase the Q and R/Q of the

HOMs, which usually lowers the Ith. This could explain why Ith statistics im-

proves as ε increases from 125 µm to 250 µm, but deteriorates at 1000 µm. Com-

pensation between the frequency spread and HOM damping also implies that

an optimal manufacture tolerance could exist to raise the overall Ith.

Figure 3.15: 500 BBU simulation results of Ith for the 4-turn lattice with cavity
shape errors within ε = 250 µm.
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Figure 3.16: 500 BBU simulation results of Ith for the 4-turn lattice with cavity
shape errors within ε = 500 µm.

Figure 3.17: 500 BBU simulation results of Ith for the 4-turn lattice with cavity
shape errors within ε = 1000 µm.

3.6 Aim for higher Ith

From BBU theory we know that Ith depends generally on the HOM properties

(ωλ, Qλ, (R/Q)λ), the lattice properties (tr and T12), and the injected bunch time

spacing tb. The previous section shows how Ith can vary with different HOM

spectra in the cavities. Our goal now is to study how much the Ith of CBETA

can be improved. Based on the knowledge from BBU theory, three methods
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CBETA mode ε µ(Ith) σ(Ith) min(Ith) N in 500 cases
(Np/2) (µm) (mA) (mA) (mA) with Ith < 40 mA
1-turn 125 179.4 56.1 21.9 1
4-turn 125 80.8 22.4 34.4 6
4-turn 250 325.3 164.4 82.4 0
4-turn 500 107.1 59.1 20.4 50
4-turn 1000 106.6 69.3 8.8 95

Table 3.4: Summary of the BBU Ith statistics of different CBETA design cases.
For the 4-turn mode, ε = 250 µm generates the most satisfying Ith statistics.

have been proposed and tested for existing 1-turn ERLs:

Method (1) Vary tb,

Method (2) Vary phase advance, and

Method (3) Introduce x-y coupling.

Both the second and third method involve modifying the optics of the recir-

culation beamline between the pairs of multipass cavities. The idea of modify-

ing beam optics to improve the Ith was first suggested in 1980[12], and has been

tested out at the Jefferson Lab’s free electron laser [13][14][15]. The effect of all

three methods are simulated using BMAD following only the design particle,

with results presented in the three following subsections.

When phase space filamentation is relevant, the BBU instability can be sup-

pressed, e.g. when the chromaticity times the energy spread is of order 1 [16].

Since the 42 MeV orbit in the FFA lattice has a great natural chromaticity, addi-

tional simulations are performed for the CBETA 1-turn lattice. Note that in order

to demonstrate the chromaticity effect, it requires tracking of multiple particles

per bunch with an energy spread. This new feature has been implemented in

BBU simulation of BMAD. The results and related theoretical analysis are pre-
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sented in section VII.

3.6.1 Effect on Ith by varying tb

Eq. (3.5) and Eq. (3.6) show that the Ith depends on tb in a complicated way

even for the most elementary BBU case. The dependence however vanishes

in the approximate formula for the trough region (Eq. (3.9)). It is interesting

to investigate how Ith of CBETA varies with tb using simulation. For all the

bunches to see desired longitudinal acceleration, tb = ntRF is required with a

positive integer n.

For the rest of the paper, letNp denote the number of times a bunch traverses

the multipass cavity(s), which is always equal to the number of recirculations

plus one. For an ERL, Np must be an even number, since each pass through a

cavity for acceleration is accompanied by one for deceleration. For instance, the

CBETA 1-turn lattice has Np = 2 and one recirculation, while the 4-turn lattice

hasNp = 8 and seven recirculations. Traditionally such an accelerator is referred

to as an Np/2 turn ERL.

For all the CBETA results presented in the previous section, we have set

n = Np/2. This corresponds to filling all the RF buckets (i.e. CW operation), and

practically we would not use a smaller n to avoid overlapping bunches. Fig. 3.18

shows the simulated Ith statistics with increasing n at integer steps for the 4-turn

lattice (Np = 8,min[n] = 4). To focus on the effect of varying tb only, the 500 sets

of HOM assignments are fixed. The result shows that the Ith depends weakly

on tb, and potential improvement on Ith is limited. Specifically the average Ith

does not change by 5%. It will still be interesting to test the effect of varying tb
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when CBETA begins operation.

Figure 3.18: (Color) Ith v.s tb/tRF for the CBETA 4-turn lattice. For each tb/tRF, 500
simulations are run with different HOM assignments (ε = 125 µm). The black
dot marks the average Ith, and the blue inner line marks the ±1σ range. The red
outer line marks the range of the entire distribution.

3.6.2 Effect on Ith by varying phase advance

Ith can potentially be improved by changing the phase advances (in both x and

y) between the multi-pass cavities. This method equivalently changes the T12

(and T34) element of the transfer matrices. In the elementary case of BBU theory,

smaller T12 directly results in greater Ith (Eq. (3.5)). However, with multiple

cavities and HOMs, it’s generally difficult to lower all the T12 elements between

different HOM pairs. To freely vary the phase advances in BMAD simulations,

a zero-length lattice element is introduced right after the first pass of the MLC

cavities. The element has the following 4x4 transfer matrix in the transverse

phase space:

Tdecoupled(φx, φy) =

Mx←x(φx) 0

0 My←y(φy)

 . (3.35)
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Each of the 2x2 submatrix depends on the Twiss parameters (βi, αi, and γi)

in one transverse direction (i = x or y) at the location of introduction:

Mi←i(φ) =

cosφ+ αi sinφ βi sinφ

−γi sinφ cosφ− αi sinφ

 . (3.36)

Note that φx and φy are the additional transverse phase advances introduced

by the element, and both can be chosen freely between [0, 2π). The 4x4 matrix

does not introduce optical coupling between the two transverse phase spaces,

and is thus named Tdecoupled. In reality there is no physical element providing

such a flexible transfer matrix, and the phase advances are changed by adjusting

the quad strengths around the accelerator structure. In simulation the introduc-

tion of this matrix allows us to arbitrarily yet effectively vary the two phase

advances.

To investigate how Ith varies with both transverse lattice optics, we need

to include vertical HOMs which give vertical kicks to the bunches. Therefore

for each simulation, each cavity is assigned with three dominant “ε = 125 µm”

horizontal HOMs and three identical vertical HOMs (polarization angle = π/2).

Fig. 3.19 shows an example assignment to one cavity. With a fixed set of HOM

assignments, the Ith statistics is obtained for different choices of (φx, φy).

Figure 3.19: An example file of three dominant horizontal HOMs (the top 3) and
three identical vertical HOMs (the bottom 3) assigned to a single CBETA MLC
cavity. The HOMs are simulated using HTC program with ε = 125 µm.
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One hundred statistics were obtained for both the 1-turn and 4-turn CBETA

lattice, and typical statistics are shown by Fig. 3.20 and Fig. 3.21 respectively.

Depending on the HOM assignment, the peak Ith can reach at least 461 mA for

the 1-turn mode (and 171 mA for the 4-turn mode) with an optimal choice of

(φx, φy). Table 3.5 summarizes the statistics of the peak Ith with the 100 different

HOM assignments. Clearly varying phase advances can be used to (signifi-

cantly) improve the Ith.

Figure 3.20: A scan of BBU Ith over the two phase advances for the CBETA 1-
turn lattice. Each cavity is assigned with a random set of 3 dipole HOMs in
both x and y polarization. (ε = 125 µm). For this particular HOM assignment, Ith

ranges from 140 mA to 610 mA.

It is also observed that φx and φy affect Ith rather independently. That is, at

certain φx which results in a low Ith (the “valley”), different choice of φy does not

help increase Ith, and vise versa. It is also observed that Ith is more sensitive to

φx, and the effect of φy becomes obvious mostly at the “peak” in φx. Physically

this is expected since many lattice elements have a unit transfer matrix in the

vertical phase space, and the effect of varying T12 is more significant than T34.

In other words, HOMs with horizontal polarization are more often excited. As

we will see this is no longer true when x-y coupling is introduced.
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Figure 3.21: A scan of BBU Ith over the two phase advances for the CBETA 4-
turn lattice. Each cavity is assigned with a random set of 3 dipole HOMs in
both x and y polarization. (ε = 125 µm). For this particular HOM assignment, Ith

ranges from 61 mA to 193 mA.

It is also observed that the location of the valley remains almost fixed when

HOM assignments are similar. Physically the valley occurs when the combina-

tion of phase-advances results in a great equivalent T12 (or T34) which excites the

most dominant HOM. Therefore, the valley location depends heavily on which

cavity has the most dominant HOM, and the simulation results agree with this

observation.

In reality the optimal set of (φx, φy) to achieve the peak Ith may not be achiev-

able for CBETA due to its limited number of free quadrupole magnets and strict

constraints on beam optics. However it suffices to have enough freedom to in-

crease the Ith over the design goal of 40 mA for the 4-turn mode. It will be

interesting to investigate this experimentally at CBETA.
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3.6.3 Effect on Ith with x-y coupling

Another method potentially improves Ith by introducing x-y coupling in the

transverse optics, so that horizontal HOMs excite vertical motions and vise

versa. This method has been shown very effective for 1-turn ERLs [17]. To

simulate the coupling effect in BMAD simulation, a different 4x4 matrix of zero-

length is again introduced right after the first pass of the LINAC:

Tcoupled(φ1, φ2) =

 0 Mx←y(φ1)

My←x(φ2) 0

 . (3.37)

The elements of the two 2x2 submatrices Mj←i(φ) are specified using on the

transverse Twiss parameters at the location of introduction:

M11 =
√

βj
βi

(cosφ+ αi sinφ)

M12 =
√
βjβi sinφ

M21 = 1√
βjβi

[(αi − αj) cosφ− (1 + αiαj) sinφ]

M22 =
√

βj
βi

(cosφ− αj sinφ).

(3.38)

The 4x4 symplectic matrix Tcoupled couples the lattice optics in the two trans-

verse directions with two phases of free choice (φ1, φ2). Note the two phases are

not the conventional phase advances, and can both range from 0 to 2π.

Fig. 3.22 and Fig. 3.23 show a typical way Ith varies with the two free phases

for the 1-turn and 4-turn lattice respectively. Depending on the HOM assign-

ment, the Ith can reach at least 299 mA for the 1-turn mode (and 127 mA for the

4-turn mode) with an optimal choice of (φ1, φ2). Because the transverse optics

are coupled, the two phases no longer affect Ith in an independent manner. That

is, there is no specific φ1 which would always result in a relatively high or low

Ith. The two phases need to be varied together to reach the peak Ith.
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Figure 3.22: A scan of BBU Ith over the two free phases for the CBETA 1-turn
lattice with x-y coupling. Each cavity is assigned with a random set of 3 dipole
HOMs in both x and y polarization. (ε = 125 µm). For this particular HOM
assignment, Ith ranges from 140 mA to 520 mA.

Figure 3.23: A scan of BBU Ith over the two free phases for the CBETA 4-turn
lattice with x-y coupling. Each cavity is assigned with a random set of 3 dipole
HOMs in both x and y polarization. (ε = 125 µm). For this particular HOM
assignment, Ith ranges from 89 mA to 131 mA.

Similar to the case with decoupled optics, 100 statistics are run for both the 1-

turn and 4-turn mode with different HOM assignments, and the statistics of the

peak Ith are summarized in Table 3.5. As expected from theory, the Ith can sta-

tistically reach a higher value for the 1-turn mode than the 4-turn mode. While

introducing additional phase advances and x-y coupling both give great poten-
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tial to raise the peak Ith (way above the high design goal of 40 mA), the former

gives more. In realty, introducing x-y coupling also requires installation of skew

quadrupole magnets, and CBETA might not achieve this due to limited space.

In short, varying phase advances is the most promising method to improve the

Ith of CBETA.

min(peak Ith) µ(peak Ith) max(peak Ith)
Case (optics) (mA) (mA) (mA)

1-turn (decoupled) 461 733 1275
1-turn (coupled) 299 557 928

4-turn (decoupled) 171 440 758
4-turn (coupled) 127 434 548

Table 3.5: Summary of the Ith statistics with varying transverse optics over 100
different HOM-assignments for the CBETA 1-turn and 4-turn mode. For both
modes, introducing additional phase advances (decoupled optics) gives greater
potential to increase Ith than x-y coupling.

3.6.4 Conclusion

To establish the trustworthiness of BBU simulations for CBETA, agreement has

been found between the BBU theory and BMAD simulations for multi-turn ERL

setups. This gives us confidence in BMAD simulation for determining the Ith for

ERL lattices with multipass cavities and multiple HOMs, like CBETA. Simula-

tion results show that for CBETA (both the 1-pass and 4-pass mode), the Ith can

always surpass the low design current of 1 mA, and can reach the high goal of

40 mA in over 98% of the cases with realistic cavity construction errors.

In the remaining 2% of the cases, the Ith can be improved by adjusting the

lattice optics, which has been an effective method for 1-turn ERLs like the Jeffer-

son FEL-ERL. Varying phase advances is shown to be more effective than intro-

ducing x-y coupling. Also, both methods are shown less effective in multi-turn

49



ERLs than in the 1-turn arrangement. It is intended to verify these observations

experimentally, and it will be interesting to test the applicability and effective-

ness of all these methods in CBETA.

The scaling law of the Ith with Nr is revisited for the case with symmet-

ric ERLs, and the scaling factor is found to be approximately 1/N2
r . This new

scaling law has better applicability for ERLs than the previously approximated

factor of 1/Nr(2Nr − 1) in [7]. Also, the effect of lattice chromaticity on the Ith is

studied assuming bunches with an Gaussian energy spread, and a relationship

between the Ith, chromaticity, and energy spread was found. Results with the

CBETA 1-pass lattice show that the Ith in reality can be higher than predicted

using single particle tracking.
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CHAPTER 4

COHERENT SYNCHROTRON RADIATION

4.1 Two particle interaction

The most elementary CSR theory studies the interaction of two electrons pass-

ing through one bending magnet, and the CSR wake w = dECSR/cdt has been

derived for four different cases (A,B,C, and D) in [22], depending on the loca-

tion of the source and the observation points within or outside the magnet. The

approximated wake expressions W (s) =
∫
w(s− s′)λ(s′)ds′ for an arbitrary lon-

gitudinal bunch distribution λ(s) have been calculated for the four cases in [23].

However, if a second magnet is located downstream not sufficiently far away

for the exit wake from the first magnet to attenuate, the wake leaks into the sec-

ond magnet, and the existing formulas cannot be applied. Therefore, our goal

is to derive the wake expressions for a system with two magnets.

The Lienard-Wiechert formula describes the electric field seen by the front

electron at point P (as in Fig. 4.1 for example) at time t. This field is produced

by the tail electron at point P ′ at retarded time t′ [25]:

E(P ) =
ke

γ2

(L− Lβn′)
(L− L · βn′)3

+
ke

c2

(L× [(L− Lβn′)× a′])
(L− L · βn′)3

, (4.1)

in which k = 1/(4πε0), e is the electron charge, and c is the speed of light. L

is the vector pointing from P ′ to P , and L is its magnitude. The two electrons

are assumed to have the same speed v = βc. n′ and a′ are respectively the unit

velocity vector and the acceleration at point P ′. By convention we refer to the

term in Eq.(4.1) that is proportional to 1/γ2 as the velocity field, and the term

with a′ as the acceleration field [22].
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Let Ls denote the path length from P ′ and P travelled by the electron. Also,

let s and s′ denote the longitudinal position of the front and tail electron at time

t with respect to the bunch center (Note: s′ is evaluated at the observation time

t, not the retarded time t′). Then the distance between the two particles at time

t can be expressed as [26]:

∆ ≡ s− s′ = Ls − βL. (4.2)

As we will see, ∆ is an important quantity in deriving the wake expressions. As

∆→ 0, the velocity field has a singularity of order 1/∆2, which is dealt with by

splitting E(P ) into two terms:

E(P ) = ESC + ECSR. (4.3)

The singularity is contained in the space charge term:

ESC =
ken
γ2∆2

, (4.4)

in which n is the unit velocity vector at point P . ESC is the field resulting from

two particles moving on a straight line without acceleration. The rate of change

in energy of the front electron at point P is:

dE
dt

= v · F = ecβn · E(P ). (4.5)

The CSR wake seen by the front electron is defined to be:

w ≡ dECSR

cdt
= eβn · (E(P )− ESC). (4.6)

Our goal is to find w for the cases with two bending magnets, and apply similar

approximations in [23] to solve for the wake expression W (s) seen by the full

bunch. Note that this is a one dimensional theory which assumes that all elec-

trons move along the same path. Following the nomenclature in [22], this will
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introduce four additional cases: E, F, G, and H. Case E and G are extension of

case A and C in which P ′ is located on the drift before the first magnet. We call

these cases the “odd cases”. Similarly, case F and case H are extension of case

B and D in which P ′ is located within the first magnet, and we call them the

“even cases”. In the two subsections below we will derive the wake expressions

respectively for the four odd cases and four even cases. The main results for all

eight cases are summarized in Appendix A.

4.1.1 Odd cases

We will first re-derive the wake expression for case A and C, then apply similar

formulation to obtain the expressions for case E and G.

Case A

The geometry for case A is shown in Fig. 4.1. The observation point P is located

at an angle θ into the magnet. Since P ′ is located on a drift, i.e. a′ = 0, as the

acceleration field vanishes. Let us define

Nv ≡ βn · (L− Lβn′), (4.7)

D ≡ (L− L · βn′). (4.8)

The subscript v indicates that the numerator belongs to the velocity field. Then

we can write w as:

w =
ke2

γ2

(
Nv
D3
− 1

∆2

)
. (4.9)
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Figure 4.1: (Color) Geometry for case A. Point P and P ′ are labeled by yellow
dots. The blue curve is the path traversed by electrons. These conventions apply
to all other geometry figures in Section I.

To findNv and D we have to first fix our coordinate system. Let us pick the unit

velocity vector at P to be n = 〈1, 0, 0〉. Vector analysis shows that:

n′ = 〈cos θ, sin θ, 0〉, (4.10)

Lx = y cos θ + Lc cos (θ/2), (4.11)

Ly = y sin θ + Lc sin (θ/2), (4.12)

in which Lc is the chord length (See Fig.(1)), and L = 〈Lx, Ly, 0〉. As in [22], we

assume a small bending angle (θ � 1), and expand all quantities, holding Rθ

constant, up to order of θ2. This yields:

Lc = Rθ −Rθ3/24, (4.13)

L = Ls −
Rθ3

24

(Rθ + 4y)

Ls
, (4.14)

in which Ls = (Rθ + y) for case A. Since Rθ is held constant, terms like Rnθ(n+2)

do not vanish (n ∈ N). It follows that:

∆ = Ls − βL =
Ls
2γ2

+
Rθ3

24

(Rθ + 4y)

Ls
. (4.15)

Since we are interested in cases with large γ, β is taken to be unity except for

(1− β) ≈ 1/2γ2 in the leading term.
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Applying Eq. (4.7),(4.8), and (4.9) gives:

Nv =
Ls
2γ2

+
Rθ3(3Rθ + 4y)

8Ls
, (4.16)

D =
Ls
2γ2

+
R2θ4

8Ls
, (4.17)

w = ke2γ2L2
s

(
64[4L2

s + γ2Rθ3(3Rθ + 4y)]

(4L2
s + γ2R2θ4)3

− 576

(12L2
s + γ2Rθ3(Rθ + 4y))2

)
.

(4.18)

Eq. (4.18) agrees with Eq. (30) from [22]. The first term, with the cubic in the

denominator, comes from the velocity field. The second term comes from the

space charge field, and it monotonically decreases with y. Note that if θ = 0, the

two terms cancel each other, and w vanishes regardless of γ. There is thus no

CSR field for particles on a straight line because the space charge term has been

subtracted in Eq. (6).

Figure 4.2: (Color) w(y) for various γ values with R = 1.0 m and θ = 0.04 rad.
For large γ, w(y) is maximized at y ≈ yp = 1

2
γRθ2. Note that w is negative at

small y due to the space charge field term.

Fig. 4.2 shows the wake as a function of y for different γ. At large γ the wake

is localized in the vicinity y ∼ yp = 1
2
γRθ2. This means for large γ, the main

contribution to W (s) comes from electrons with a retarded position y � Rθ.
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With this the wake reduces to:

w(y) = 4ke2γ2

[
64y3(y + γ2Rθ3)

(4y2 + γ2R2θ4)3
− 9

(3y + γ2Rθ3)2

]
. (4.19)

In the limit of γ2 � Ls/Rθ
3, the second term in the velocity field term domi-

nates, giving:

w(y) = 256ke2γ4 y3Rθ3

(4y2 + γ2R2θ4)3
. (4.20)

One can check that yp maximizes this term. For large γ the wake can be

approximated as a dirac delta function: w(y) ∼ δ(y − yp). This is a good ap-

proximation because the beam distribution over the retarded positions of P ′ are

stretched over a much longer distance than the width of the peak in Fig. 2. To

find the corresponding dirac delta function in the ∆ space, we need to calculate

∆(y = yp). In the limit y � Rθ, we have:

∆(y) =
y

2γ2
+

1

6
Rθ3 − 1

8y
R2θ4 +O(1/y2). (4.21)

Neglecting higher order terms, we have ∆(yp) = 1
6
Rθ3. Therefore the wake in

the ∆ space can be written as:

w(∆) = Aδ

(
∆− 1

6
Rθ3

)
. (4.22)

This makes sense since for large γ, the dominant term in ∆(y) is the constant

term Rθ3/6. Assuming that the drift in front of the magnet is infinitely long, the

normalization factor A can be found by:

A =

∫
wd∆ =

∫ ∞
0

w(y)
∂∆

∂y
dy, (4.23)

in which w(y) is given by Eq.(20) and the derivative ∂∆
∂y

can be computed from

Eq.(21):
∂∆

∂y
=

1

2γ2
+

1

8y2
R2θ4. (4.24)
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Mathematica gives A = 4ke2/Rθ. For a bunch with a longitudinal distribution

λ(s), the wake expression W (s) is:

W (s) =

∫
w(s− s′)λ(s′)ds′ (4.25)

=
4ke2

Rθ
λ

(
s− 1

6
Rθ3

)
. (4.26)

Eq. (4.26) agrees with Eq. (10) in [23]. Assuming the bunch has a bunch length

of lb, then for a large entrance angle θ such that Rθ3/6� lb, the wake attenuates.

In the case where the bunch has not entirely entered the magnet (i.e. Rθ < lb),

then the tail portion of the bunch outside the magnet sees no CSR wake.

There are some limitations in applying the wake expression in Eq. (4.26).

First, the derivation assumes that γ2 � Ls/Rθ
3, which implies that θ � 1/γ is

required. Therefore depending on the γ value, the observation point cannot be

too close to the magnet entrance. For small θ such that θ ∼ 1/γ, or equivalently

∆ ∼ R/γ3, the wake needs to be found numerically. However for a very large

γ such a small numerical scale can be difficult to resolve in simulation software.

A numerical formulation to resolve this has been presented in IPAC 2017 [27].

In addition, the derivation assumes a drift with a length ym � yp, so that

most of the peak in Fig. (2) appears within the drift. Note that yp can be large

since it increases with γ. For an insufficiently long drift, one needs to use the

more general formula from Eq. (4.25) to calculate W (s):

W (s) =

∫ s−∆(y=0)

s−∆(y=ym)

w(s− s′)λ(s′)ds′ (4.27)

=

∫ ym

0

w(y)λ(s−∆(y))
∂∆

∂y
dy, (4.28)

in which w(y) is given by Eq.(4.18). Note that change of variable from s′ to y has

been applied so there is no need to find an expression for w(∆). In the case with

ym � yp, contribution from the drift becomes insignificant for γθ � 1.
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Case C

The geometry for case C is shown in Fig. 4.3 below. Since case C is an extension

of case A, we will apply a similar derivation process. To find Nv and D we

Figure 4.3: (Color) Geometry for case C.

have to first fix our coordinate system. Let us pick the exit point of the bending

magnet to be the origin, and the exit drift to lie along the +x axis. This choice

will be shown convenient for case E too. Let φ denote the total bending angle of

the magnet. Vector analysis shows that:

n = 〈1, 0, 0〉, (4.29)

n′ = 〈cosφ, sinφ, 0〉, (4.30)

Lx = y cosφ+ Lc cos (φ/2) + x, (4.31)

Ly = y sinφ+ Lc sin (φ/2). (4.32)

We again expand all quantities in small φ, holding Rφ constant, up to order of

φ2. This yields:

Lc = Rφ−Rφ3/24, (4.33)

L = Ls −
φ2

24

R2φ2 + 4Rφ(x+ y) + 12xy

Ls
, (4.34)

∆ =
Ls
2γ2

+
φ2

24

R2φ2 + 4Rφ(x+ y) + 12xy

Ls
, (4.35)
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in which Ls = Rφ+ x+ y for case C. Applying Eq. (4.7) and Eq. (4.8) gives:

Nv =
Ls
2γ2

+
(Rφ+ 2x)(3Rφ+ 2x+ 4y)φ2

8Ls
, (4.36)

D =
Ls
2γ2

+
(Rφ+ 2x)2φ2

8Ls
. (4.37)

These lead to:

w = ke2γ2L2
s

(
64[4L2

s + γ2φ2(Rφ+ 2x)(3Rφ+ 2x+ 4y)]

(4L2
s + γ2φ2(Rφ+ 2x)2)3

− 576

(12L2
s + γ2φ2(R2φ2 + 4Rφ(x+ y) + 12xy))2

)
. (4.38)

Eq. (4.38) agrees with Eq. (34) from [22]. As expected, the wake vanishes if

φ → 0 or x → ∞. In the limit γ2 � Ls/(Rφ + 2x)φ2, the second term in the

velocity field term dominates. With the additional limit of y � Rφ and y � x,

the wake reduces to:

w = 256ke2γ4 y3(Rφ+ 2x)φ2

(4y2 + γ2(Rφ+ 2x)2φ2)3
. (4.39)

This wake is maximized at yp = 1
2
γ(Rφ+ 2x)φ. In the limit of large y we also

have:

∆(y) =
y

2γ2
+

1

6
(Rφ+ 3x)φ2 − 1

8y
(Rφ+ 2x)2φ2 +O(1/y2). (4.40)

Similar to case A, we assume that ym, the length of the drift in front of the mag-

net, is much longer than yp. With ∆(yp) = 1
6
(Rφ + 3x)φ2, the wake can be ap-

proximated as a dirac delta function:

w(∆) = Aδ

(
∆− 1

6
(Rφ+ 3x)φ2

)
. (4.41)

The normalization factor A can be found by:

A =

∫ ∞
0

w(y)
∂∆

∂y
dy =

4ke2

Rφ+ 2x
, (4.42)
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For a bunch with a longitudinal distribution λ(s), the wake expression W (s) is:

W (s) =

∫
w(s− s′)λ(s′)ds′ (4.43)

=
4ke2

(Rφ+ 2x)
λ

(
s− 1

6
(Rφ+ 3x)φ2

)
, (4.44)

which agrees with Eq. (10) in [23]. For x→ 0, we recover the expression for case

A. For large x, the wake vanishes as expected. Since the derivation assumes

γ2 � Ls/(Rφ+ 2x)φ2, the bending angle φ cannot be too small. Also, the drift in

front of the magnet has to be much longer than yp. Otherwise one needs to use

a more general formula as Eq. (4.28).

Case E1

Case E has two subcases depending on the bending direction of the second mag-

net. For case E1, the two magnets have the same bending direction. For opposite

bending directions, see case E2 in the following subsection. The geometry for

case E1 is shown in Fig. 4.4. A second magnet with a bending radius R2 has

been introduced at a distance x behind the first magnet. The observation point

P is located at an angle θ2 into the second magnet. Note that θ2 is not the total

bending angle of the second magnet.

Figure 4.4: (Color) Geometry for case E1.

Since case E is an extension of case C, we will apply a similar derivation
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procedure. Using the same coordinate system as in case C, we now have:

n = 〈cos θ2,− sin θ2, 0〉, (4.45)

n′ = 〈cosφ1, sinφ1, 0〉, (4.46)

Lx = (y cosφ1 + Lc1 cos
φ1

2
+ x+ Lc2 cos

θ2

2
), (4.47)

Ly = (y sinφ1 + Lc1 sin
φ1

2
− Lc2 sin

θ2

2
), (4.48)

in which Lc1 and Lc2 are respectively the chord length associated with R1φ1 and

R2θ2. Expanding in small φ1 and θ2 gives:

L = Ls −
1

24Ls

{
[R2

1φ
2
1 + 12(R2θ2 + x)y + 4R1φ1(R2θ2 + x+ y)φ2

1]

+ 6[R2θ2(R1φ1 + 2y)φ1θ2] + [R2θ2(4R1φ1 +R2θ2 + 4x+ 4y)]θ2
2

}
, (4.49)

in which Ls = (R1φ1 +R2θ2 + x+ y) for case E1. It follows that:

Nv =
Ls
2γ2

+
1

8Ls
[(3R1φ1 + 2x+ 4y + 2R2θ2)φ1 + (4R1φ1 + 4x+ 4y + 3R2θ2)θ2]

× (R1φ
2
1 + 2xφ1 + 2R2φ1θ2 +R2θ

2
2), (4.50)

D =
Ls
2γ2

+
1

8Ls
(R1φ

2
1 + 2xφ1 + 2R2φ1θ2 +R2θ

2
2)2. (4.51)

In the limit of

γ2 � Ls/(φ1 + θ2)(R1φ
2
1 + 2xφ1 + 2R2φ1θ2 +R2θ

2
2), (4.52)

the dominant term again comes from the velocity field. As in case C, we take

the additional limit of large y (i.e. y � R1φ1, x, R2θ2), and the wake reduces to:

w =
256ke2γ4y3(φ1 + θ2)(R1φ

2
1 + 2xφ1 + 2R2φ1θ2 +R2θ

2
2)

[4y2 + γ2(R1φ2
1 + 2xφ1 + 2R2φ1θ2 +R2θ2

2)2]3
. (4.53)

One can verify that yp = 1
2
γ(R1φ

2
1 + 2xφ1 + 2R2φ1θ2 + R2θ

2
2) maximizes w(y)

in Eq. (4.53). If the second magnet is removed (i.e. θ2 = 0), Eq. (4.53) reduces to
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Eq. (4.39) in case C. In the limit of large y we also have:

∆ =
y

2γ2
+

1

6

[
(R1φ1 + 3x)φ2

1 +R2θ2(3φ2
1 + 3φ1θ2 + θ2

2)
]

− 1

8y
(R1φ

2
1 + 2xφ1 + 2R2φ1θ2 +R2θ

2
2)2 +O(1/y2). (4.54)

As before, the constant term in ∆ gives the location of the dirac delta function.

The normalization factor A is:

A =

∫ ∞
0

w(y)
∂∆

∂y
dy =

4ke2(φ1 + θ2)

R1φ2
1 + 2xφ1 + 2R2φ1θ2 +R2θ2

2

. (4.55)

So the approximated wake expression for case E1 is:

W (s) =
4ke2(φ1 + θ2)

R1φ2
1 + 2xφ1 + 2R2φ1θ2 +R2θ2

2

×

λ(s− 1

6

[
(R1φ1 + 3x)φ2

1 +R2θ2(3φ2
1 + 3φ1θ2 + θ2

2)
]
). (4.56)

Let us examine some limiting cases. First, if we set θ2 = 0, we recover

the W (s) for case C as expected (See Eq. (4.44)). If we instead remove the

first magnet by setting φ1 = 0, we recover case A with only the second mag-

net (See Eq. (4.26) with θ → θ2). Another interesting limit is to set x = 0 and

R1 = R2 = R. This physically corresponds to removing the drift between the

two magnets and merging the two magnets. The result is:

W (s) =
4ke2

R(φ1 + θ2)
λ

(
s− 1

6
R(φ1 + θ2)3

)
. (4.57)

As expected, we recover the W (s) for case A with the observation point located

at θ = (φ1 + θ2) into the merged magnet. Similar to case C and case A, there

are limitations in applying Eq. (4.56). The length of the drift in front of the

first magnet has to be much greater than yp. Also, the assumption of large γ in

Eq. (4.52) requires (φ1 + θ2) to be not small.
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Case E2

In contrast to case E1, the second magnet has a bending direction opposite

to the first magnet. With our coordinate system the vector n now becomes

〈cos θ2, sin θ2, 0〉. Following the same derivation procedure as in case E1, we ob-

tain:

W (s) =
4ke2(φ1 − θ2)

R1φ2
1 + 2xφ1 + 2R2φ1θ2 −R2θ2

2

×

λ

(
s− 1

6

[
(R1φ1 + 3x)φ2

1 +R2θ2(3φ2
1 − 3φ1θ2 + θ2

2)
])

. (4.58)

As expected, the result is very similar to case E1, with θ2 → −θ2. However, the

term R2θ2 remains unchanged since it comes from the path length and is always

positive.

Case G1 and G2

Similar to case E, there are two subcases in case G depending on the two bending

directions. The geometry for case G1 is shown in Fig. 4.5. The observation point

P is now located a distance x2 down the second magnet. Let φ2 denote the total

bending angle of the second magnet.

Figure 4.5: (Color) Geometry for case G1.
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With the same derivation procedure as in case E1 and E2, we obtain:

W (s) =
4ke2(φ1 ± φ2)

R1φ2
1 + 2xφ1 + 2R2φ1φ2 ±R2φ2

2 + 2x2(φ1 ± φ2)

× λ(s− 1

6
[(R1φ1 + 3x)φ2

1 +R2φ2(3φ2
1 ± 3φ1φ2 + φ2

2) + 3x2(φ1 ± φ2)2]). (4.59)

Note that the ± sign denotes “ + ” for case G1 (when the two magnets bend in

the same direction) and “ − ” for case G2 (with opposite bending directions).

One can verify that for x2 = 0, we recover the expressions for case E1 and E2.

If we merge the two magnets by taking x = 0 and R1 = R2 = R, then case G1

reduces to case C with φ = φ1 + φ2, as expected.

4.1.2 Even cases

We will first re-derive the wake expression for case B and D, then apply a similar

formulation to obtain the expressions for case F and H.

Case B

The geometry for case B is shown in Fig. 4.6. The point P ′ and P are inside the

same magnet separated by an angle θ.

Since P ′ is inside a bend, the tail electron at the retarded time has an cen-

tripetal acceleration with magnitude |a′| = β2c2/R. This adds the first extra

term to the wake:

w = ke2

(
Na
D3

+
1

γ2

(
Nv
D3
− 1

∆2

))
, (4.60)
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Figure 4.6: (Color) Geometry for case B. Note that the θ here is not the same as
the θ defined in case A. The θmax here corresponds to the θ in case A.

in whichNa ≡ βn · (L× [(L−Lβn′)× a′])/c2. We first fix our coordinate system

by choosing n = 〈1, 0, 0〉, then we have:

n′ = 〈cos θ, sin θ, 0〉, (4.61)

a′ =
β2c2

R
〈− sin θ, cos θ, 0〉, (4.62)

L = 〈(Lc cos (θ/2)), (Lc sin (θ/2)), 0〉. (4.63)

Expanding in small θ, keeping Rθ constant, gives:

L = Ls −
Rθ3

24
, (4.64)

Na =
−Ls
2γ2

(Rθ)

2R
θ +

(Rθ)2

16R
θ3, (4.65)

Nv =
Ls
2γ2

+
3Rθ3

8
, (4.66)

D =
Ls
2γ2

+
Rθ3

8
, (4.67)

in which Ls = Rθ for case B. Note that while even terms in θ survive in L, Nv,

and D, odd terms survive in Na, and it is required to keep the expansion up to

order θ3 in Na. The expression for Na is not simplified to explicitly show this

observation, and the R in the denominator comes directly from a′ and therefore

does not have a θ associated with it. It follows that:

w =
32ke2γ4

R2

[
γ2θ2 − 4

(γ2θ2 + 4)3
+

2

γ2θ2

(
3γ2θ2 + 4

(γ2θ2 + 4)3
− 9

(γ2θ2 + 12)2

)]
, (4.68)
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which agrees with Eq.(36) in [22]. For γθ � 1, the wake reduces to:

w(γθ � 1) =
−4ke2γ4

3R2
. (4.69)

The physical significance of this result has been discussed in [22]. Here we are

interested in the case with γθ � 1, for which the acceleration field term domi-

nates:

w(γθ � 1) =
32ke2

R2θ4
. (4.70)

In the limit of large γ we also have:

∆ = Ls − βL =
Ls
2γ2

+
Rθ3

24
→ Rθ3

24
(4.71)

To solve for W (s) =
∫
w(s − s′)λ(s′)ds′ one can simply write down w(∆) by

inverting Eq. (4.71). However, for later cases with more complicated geometry,

w(∆) cannot be easily inverted. As shown in [23], a more general method is

to apply integration by parts. This requires us to find the function u such that

∂u/∂s′ = w(s−s′). Since both w and ∆ are functions of the independent variable

θ, we can compute:

du

dθ
=
∂u

∂s′
ds′

dθ
= −wd∆

dθ
=
−4ke2

Rθ2
, (4.72)

in which the minus sign is present because ∆ = s − s′. Integration over θ gives

u = 4ke2/Rθ, which turns out to be the same as the normalization factor A in

case A (see Eq. (4.23)). Note that the limit of integration is (s −∆max) < s′ < s,

in which ∆max = ∆(θ = θmax) = Rθ3
max/24. When θ = θmax, the point P ′ is

located at the entrance of the magnet. One can also interpret θmax as the entrance

angle of the observation point P , which is exactly the “θ” defined in case A. For
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s′ < (s−∆max), one needs to use results from part A. It follows that:

W (s) = (uλ)

∣∣∣∣s
s−∆max

−
∫ s

s−∆max

u
∂λ(s′)

∂s′
ds′ (4.73)

= −4ke2

[
λ(s−∆max)

Rθmax
+

∫ s

s−∆max

1

Rθ

∂λ(s′)

∂s′
ds′
]
, (4.74)

which agrees with Eq. (6) in [23]. To apply this expression, it is required that

γθ � 1, so the observation point P cannot be too close to the magnet’s entrance.

The expression overlooks the wake contributions from θ ∼ 1/γ or even smaller

θ. As discussed in case A, these contributions can be calculated numerically. For

a very large γ these contributions can be ignored.

Case D

The geometry for case D is shown in Fig. 4.7. The point P ′ is located at an angle

θ measured from the exit of the magnet.

Figure 4.7: (Color) Geometry for case D. Note that the θ here is not the θ defined
in either case A or B.

Since Case D is an extension of case B, we will apply a similar derivation

process. Let us again choose n = 〈1, 0, 0〉, then n′ and a′ are the same as in case

B, and:

L = 〈(Lc cos (θ/2) + x), (Lc sin (θ/2)), 0〉. (4.75)
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Expanding in small θ gives:

L = Ls −
Rθ3

24

(Rθ + 4x)

Ls
, (4.76)

Na =
−Ls
2γ2

θ2

2
+
θ4

16

(Rθ + 2x)2

(Rθ + x)
, (4.77)

Nv =
Ls
2γ2

+
(3R2θ2 + 8Rθx+ 4x2)θ2

8(Rθ + x)
, (4.78)

D =
Ls
2γ2

+
(Rθ + 2x)2θ2

8Ls
, (4.79)

in which Ls = Rθ + x in case D. One can verify that as x → 0, these quantities

reduce to the ones in case B. It follows that:

w = 32ke2γ4L2
s

[
(γ2θ2(Rθ + 2x)2 − 4L2

s)θ
2

[γ2θ2(Rθ + 2x)2 + 4L2
s]

3

+
2

γ2

(
γ2θ2(3R2θ2 + 8Rθx+ 4x2) + 4L2

s

[γ2θ2(Rθ + 2x)2 + 4L2
s]

3
− 9

[γ2θ2Rθ(Rθ + 4x) + 12L2
s]

2

)]
,

(4.80)

which agrees with Eq.(36) in [22]. If we set x = 0, the wake reduces to the one

in case B. To focus on case D we assume x > 0 from now on. In the limit θ → 0,

the wake vanishes:

w(θ → 0) =

[
0 +

4γ2

x2
− 4γ2

x2

]
= 0, (4.81)

regardless of the value of γ. As in case B, we are interested in the limit γθ � 1,

for which the acceleration field term dominates:

w(γθ � 1) = 32ke2 (Rθ + x)2

θ2(Rθ + 2x)4
. (4.82)

In a more strict limit of γ2 � (Rθ + x)/Rθ3 we have:

∆ =
Rθ3

24

(Rθ + 4x)

Rθ + x
. (4.83)

To solve for W (s) we need to find the function u such that ∂u/∂s′ = w(s − s′).

Similar to case B, we have:

du

dθ
=
∂u

∂s′
ds′

dθ
= −wd∆

dθ
=
−4ke2R

(Rθ + 2x)2
, (4.84)
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Integration over θ gives u = 4ke2/(Rθ + 2x). We again observe that u is the

same quantity as the normalization factor A in case C. We are now ready to

apply integration by parts to find W (s). Note that the region of integration is

(s − ∆max) < s′ < (s − ∆min), in which ∆max = ∆(θ = θmax) and ∆min = ∆(θ =

0) = 0. Since θ in case D is measured from the exit of the magnet, we have

θmax = φ, the total bending angle of the magnet. It follows that:

W (s) = (uλ)

∣∣∣∣s
s−∆max

−
∫ s

s−∆max

u
∂λ(s′)

∂s′
ds′ (4.85)

= −4ke2

[
λ(s−∆max)

Rφ+ 2x
+

∫ s

s−∆max

1

Rθ + 2x

∂λ(s′)

∂s′
ds′
]
. (4.86)

The result agrees with Eq. (15) [23]. Note that one of the boundary term uλ

(s′ → s) vanishes since w(θ → 0) = 0. One can check that if the observation

point P is located at the exit of the magnet (i.e. x = 0, φ = θmax), we recover the

result of case B. For large x, the expression vanishes as expected. When using

equation Eq. (4.86), one should abide to the limit γ2 � (Rθ+x)/Rθ3. This means

for a very large x value, W (s) can give inaccurate results.

Case F1

Fig. 4.8 shows the geometry for case F1. In terms of the location of the ob-

servation point, case F1 and E1 are the same. Similar to case E1, case F1 has

two magnets bending in the same direction. For opposite bending directions,

see case F2 in the following subsection. The geometry for case F1 is shown in

Fig. 4.8.

Since case F is an extension of case D, we follow similar derivations. With
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Figure 4.8: (Color) Geometry for case F1.

the coordinate system defined in case E1, we now have:

n = 〈cos θ2,− sin θ2, 0〉, (4.87)

n′ = 〈cos θ1, sin θ1, 0〉, (4.88)

a′ =
β2c2

R
〈− sin θ, cos θ, 0〉, (4.89)

Lx = (Lc1 cos
θ1

2
+ x+ Lc2 cos

θ2

2
) (4.90)

Ly = (Lc1 sin
θ1

2
− Lc2 sin

θ2

2
). (4.91)

From case B and D we know for large γ the dominant term in w is the accelera-

tion field term:

w =
32ke2γ4L2

s

R1

(R1θ
2
1 + 2R1θ1θ2 + 2xθ2 +R2θ

2
2)×

γ2(R1θ
2
1 + 2R2θ1θ2 + 2xθ1 +R2θ

2
2)2 − 4L2

s

[γ2(R1θ2
1 + 2R2θ1θ2 + 2xθ1 +R2θ2

2)2 + 4L2
s]

3
, (4.92)

in which Ls = (R1θ1 +x+R2θ2) for case F. Note that w(x→∞) ∝ 1/x→ 0 as

expected. Assuming R1 and R2 are on the same order of magnitude (R1 ≈ R2 ≈

R), then in the limits of γ(θ1 + θ2)� 1 we have:

w =
32ke2L2

s

R1

(R1θ
2
1 + 2R1θ1θ2 + 2xθ2 +R2θ

2
2)

(R1θ2
1 + 2R2θ1θ2 + 2xθ1 +R2θ2

2)4
, (4.93)

Note that the numerator and denominator of w do not cancel. With a more strict
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limit of γ2 � Ls/R(θ1 + θ2)3 we have:

∆ =
1

24Ls
[R1θ

3
1(R1θ1 + 4x+ 4R2θ2) + 6R1θ

2
1R2θ

2
2 +R2θ

3
2(4R1θ1 + 4x+R2θ2)],

(4.94)

To find W (s) we again look for the function u such that ∂u/∂s′ = w(s − s′). It

follows that:

du

dθ1

= −4ke2 (R1θ
2
1 + 2R1θ1θ2 + 2xθ2 +R2θ

2
2)

(R1θ2
1 + 2R2θ1θ2 + 2xθ1 +R2θ2

2)2
, (4.95)

u =
4ke2(θ1 + θ2)

R1θ2
1 + 2R2θ1θ2 + 2xθ1 +R2θ2

2

. (4.96)

Again, we see that u equals to A in the pairing case E1. Integration by parts

gives:

W (s) = −4ke2

[
−λ(s−∆min)

R2θ2

+
(φ1 + θ2)λ(s−∆max)

R1φ2
1 + 2R2φ1θ2 + 2xφ1 +R2θ2

2

+

∫ s−∆min

s−∆max

(θ1 + θ2)

R1θ2
1 + 2R2θ1θ2 + 2xθ1 +R2θ2

2

∂λ(s′)

∂s′
ds′
]
, (4.97)

in which ∆max = ∆(θ1 = φ1, θ2) and

∆min = ∆(θ1 = 0, θ2) =
R2θ

3
2

24

R2θ2 + 4x

R2θ2 + x
. (4.98)

The first term inW (s), which corresponds to the integration boundary at θ1 = 0,

might look physically invalid since it diverges for θ2 → 0 and does not vanish for

x → ∞. However due to the required limit of γ2 � Ls/R(θ1 + θ2)3, one simply

can not apply Eq. (4.97) with a very small θ2 or large x. For θ2 → 0, one should

simply apply case D. For x → ∞ we know the wake vanishes, and the two

magnets should be considered “decoupled”. To test the validity of Eq. (4.97),

let us consider a case with x = 0 and R1 = R2 = R. This equivalently merges
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the two magnets into one, and the point P is located (φ1 + θ2) into the merged

magnet. To compute the W (s) at point P due to the merged magnet, we need

to add the contribution from the first sub-magnet using case F and the second

sub-magnet using case B. Applying Eq. (4.97) and Eq. (4.74) respectively gives:

W (s) = WB(s, θmax = θ2) +WF1(s, x = 0)

= −4ke2

[
λ(s−∆B,max)

Rθ2

+

∫ s

s−∆B,max

1

Rθ

∂λ(s′)

∂s′
ds′

]

− 4ke2

[
−λ(s−∆F,min)

R2θ2

+
λ(s−∆F,max)

R(φ1 + θ2)
+

∫ s−∆F,min

s−∆F,max

1

R(θ1 + θ2)

∂λ(s′)

∂s′
ds′

]
,

(4.99)

The quantity θ here denotes the angle measured from point P backward, so

θ1 = (θ − θ2) in WF1. Since ∆F,max(x = 0) = R(φ1 + θ2)3/24 = ∆B(θ = φ1 + θ2),

the two integrals can be merged into one. Also, since ∆F,min(x = 0) = Rθ3
2/24 =

∆B,max(θmax = θ2), the first term in WF1 cancels with the boundary term in WB

(since they have the opposite sign), giving:

W (s) = −4ke2

[
λ(s−∆B(θ = φ1 + θ2))

R(φ1 + θ2)
+

∫ s

s−∆B(θ=φ1+θ2)

1

Rθ

∂λ(s′)

∂s′
ds′
]
. (4.100)

As expected, we have recovered case B for the merged magnet with an entrance

angle of (φ1 + θ2). This validates our wake expression for case F1, and the first

boundary term in Eq. (4.97) is necessary in this formulation. Without this term

to cancel the boundary term in case B, one could generate free wakes by splitting

the magnet into small magnets, which is not physical.
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Case F2

Similar to E2, the two magnets now bend in the opposite direction. With the

same derivation procedure as in case F1, we obtain:

W (s) = −4ke2

[
−λ(s−∆min)

R2θ2

+
(φ1 − θ2)λ(s−∆max)

R1φ2
1 + 2R2φ1θ2 + 2xφ1 −R2θ2

2

+

∫ s−∆min

s−∆max

(θ1 − θ2)

R1θ2
1 + 2R2θ1θ2 + 2xθ1 −R2θ2

2

∂λ(s′)

∂s′
ds′
]
, (4.101)

The result is very similar to case F1, again with θ2 → −θ2 and R2θ2 unchanged.

Case H1 and H2

Similar to case F, there are two subcases in case H depending on the two bending

directions. Fig. 4.9 shows the geometry for case H1 in which the two magnets

bend in the same direction. The observation point P is located at a distance x2

down the second magnet, just like in case G.

Figure 4.9: (Color) Geometry for case H1.

We follow the same derivation procedure as in case F1 and F2. In the limit

of γ2 � Ls/R(θ1 + φ2)3 we have:

∆ =
1

24Ls
[R1θ

3
1(R1θ1 + 4x+ 4R2φ2 + 4x2)± 6R1θ

2
1φ2(R2φ2 + 2x2)

+R2φ
3
2(4R1θ1 + 4x+R2φ2) + 4x2φ

2
2(3R1θ1 + 3x+R2φ2)], (4.102)
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w =
32ke2L2

s(R1θ
2
1 ± 2R1θ1φ2 ± 2xφ2 ±R2φ

2
2)

R1(R1θ2
1 + 2R2θ1φ2 + 2xθ1 ±R2φ2

2 + 2x2(θ1 ± φ2))4
, (4.103)

u(θ1) =
4ke2(θ1 ± φ2)

R1θ2
1 + 2R2θ1φ2 + 2xθ1 ±R2φ2

2 + 2x2(θ1 ± φ2)
. (4.104)

Integration by parts gives:

W (s) = −
[
−u(0)λ(s−∆min) + u(φ1)λ(s−∆max) +

∫ s−∆min

s−∆max

u(θ1)
∂λ(s′)

∂s′
ds′
]
.

(4.105)

Again, the± sign denotes “ + ” for case H1 and “−” for case H2. Similar to case

F, one cannot apply this expression for small φ2 or large x. One can verify that

for x2 = 0, we recover the wake expressions for case E1 and E2.

4.2 Theory v.s Simulation

To test the formulas derived for all cases, we run CSR simulations in Bmad

for four different beamlines (details on Bmad simulation and parameter choice

are described in Section IV). Each beamline consists of only drifts and bending

magnet(s) with lengths described by Table I.

Length (mm) D0 B1 D1 B2 D2
Beamline A 60 500 600 X X
Beamline B 60 133 600 X X
Beamline C 60 133 70 500 X
Beamline D 60 133 70 122 600

Table 4.1: The length of each element in the four beamlines. In the element
names,“D” denotes a drift, and “B” denotes a bending magnet. Each beamline
starts with drift D0, followed by B1, D1, B2, then D2. The symbol “X” means
that the element is absent.

In this section we redefine s to be the longitudinal position of the bunch

center from the beginning of the beamline. The old s is replaced by symbol z
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to avoid confusion. For each beamline we will track a Gaussian bunch (σz =

1.078 mm) and compare the evolution of the wakefield W (z) with the theory.

For easy comparison with other literature, we normalize W (z) in all the plots

by the characteristic CSR wake [28]:

W0 =
kQe

(R2σ4
z)

1/3
, (4.106)

in which Q is the bunch charge, and Np = Q/e is the number of electrons in the

bunch. We choose a small bunch charge of Q = 1.0 pC so that the longitudinal

distribution λ(z) remains Gaussian during the transport. Note that in general∫
λ(z)dz = Np. The electron energy is chosen to be 42 MeV, which corresponds

to γ = 82.2 for electrons. The two magnets bend in the opposite direction, and

the bending radii are R1 = 0.808 m and R2 = 0.487 m. With R set to R1 in

Eq. (4.106), we have W0 = 1.50 × 10−17 J/m = 93.7 eV/m. To see the wake

propagation over a reasonable length scale, the final element(s) in each beamline

have been made sufficiently long. The length of the first drift D0 does not play

a role since any drift before the first magnet is assumed to be infinitely long in

the CSR simulation of Bmad.

4.2.1 Beamline A

The purpose of beamline A and B is to confirm that Bmad simulation agrees

with the previously published formulas with one bending magnet (case A,B,C,

and D). The magnet in beamline A is made long (500 mm) to allow studies of

the wake propagation up to the steady state (s-s). As discussed in [23], the s-s

occurs when the bunch center is L0 = Rθ � (24σzR
2)1/3 into the magnet. L0 is

called the overtaking distance, and is equal to 257 mm for magnet B1. The wake
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in bend B1 has contributions from case A and case B:

W (z) = WB,integral(z, θ1) +WB,boundary(z, θ1) +WA(z, θ1), (4.107)

in which θ1 = (s− 60 mm)/R1 is the angle of the observation point into magnet

B1. Eq. (4.107) is often referred to as the entrance wake. Fig. 4.10 below shows

the wake propagation in B1 by theory and Bmad simulations, which agree well.

The steady state is reached when s ≈ 520 mm, beyond which the contribution

to W (z) comes solely from the WB,integral term, and becomes independent of θ1.

Figure 4.10: (Color) Evolution of W (z) inside magnet B1 in beamline A. The
curves are theory prediction using Eq. (4.107), and the dots are from Bmad sim-
ulation. The darkest curve at s = 0.55 m is the steady state CSR wake.

The wake in drift D1 has contributions from case C and case D:

W (z) = WD,integral(z, x, φ1) +WD,boundary(z, x, φ1) +WC(z, x, φ1), (4.108)

in which x = (s − 560 mm) is the location of the bunch center into the drift D1.

Since the s-s is already reached, the only contribution comes from the WD,integral

term. This makes sense since for large φ1 the other two terms vanish. Fig. 4.11

shows the wake propagation in D1 by theory and Bmad simulations, which

again agree well. A similar benchmarking result has been shown in [26].
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Figure 4.11: (Color) Evolution ofW (z) inside drift D1 in beamline A. The curves
are theory prediction using Eq. (4.108), and the dots are from Bmad simulation.

4.2.2 Beamline B

In contrast to beamline A, the magnet’s length in beamline B is shorter than the

overtaking distance (i.e. Lm < L0), so the s-s cannot be reached. This means all

three terms in Eq. (4.108) contribute to the exit wake. The wake evolution in D1

is shown in Fig. 4.12 below, and we again observe agreement between theory

and Bmad simulation.

4.2.3 Beamline C

The purpose of Beamline C is to test the new formulas for case E and F. The

wake propagation up to D1 has been shown in beamline B, so here we will fo-

cus on W (z) in B2 only. The drift length between the two magnets is made short

(70 mm) so that the wake contribution from the first magnet remains significant

in the second magnet. The short length also allows us to neglect the wake con-

tribution from the drift itself, because it is the case of small ym in Eq. (4.28). This
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Figure 4.12: (Color) Evolution of W (z) inside drift D1 in beamline B. The curves
are theory prediction using Eq. (4.108), and the dots are from Bmad simulation.

neglected contribution corresponds to case A for the second magnet.

The contribution to the total W (z) therefore consists of a total of six terms: 2

term from case B, 3 terms from case F2, and 1 term from case E2. Here we sort

the terms into three groups:

W (z) = W1(z) +W2(z) +W3(z), (4.109)

W1(z) = WB,integral(z, θ2), (4.110)

W2(z) = WB,boundary(z, θ2) +W near
F2,boundary(z, θ2, x), (4.111)

W3(z) = WF2,integral(z, θ2, x, φ1) +W far
F2,boundary(z, θ2, x, φ1) +WE2(z, θ2, x, φ1),

(4.112)

in which θ2 = (s−263 mm)/R2 is the angle of the observation point into magnet

B2, x is the length of drift D1, and φ1 is the total bending angle of B1. W1(z) has

only the integral term of case B for magnet B2. This term is responsible for the

steady state CSR wake in magnet B2. W2(z) has the boundary term of case B

and the near boundary term of case F2. Recall that WF2 from Eq. (4.101) has

two boundary terms. To distinguish them we call the one evaluated at θ1 = φ1
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the near term, and the one evaluated at θ1 = φ1 the far term. As discussed in

case F, the near term and the boundary term from case B cancel each other if we

merge the two magnets (i.e. W2(z) = 0 if x = 0 and R1 = R2). W3(z) includes

the rest of the contribution from magnet B1 and the long drift in front of it. One

can identify all six terms in Eq. (4.112) based on their names using the tables in

Appendix A.

Fig. 4.13, 4.14, and 4.15, respectively show the evolution ofW1(z),W2(z), and

W3(z) in magnet B2 (s > 263 mm) as θ2 increases. For comparison purposes, the

three plots have the same scale, the curves are evaluated at the same longitudi-

nal positions.

Figure 4.13: (Color) Evolution of W1(z) inside magnet B2 in beamline C by the-
ory prediction (See Eq. (4.112).). The evolution is similar to Fig. 4.10 since they
both show entrance wakes. The darkest curve at s = 0.68 m corresponds to the
steady state wake in B2.

Fig. 4.16 shows the total wake W (z) in B2 and the simulation results from

Bmad. As s increases, the main contribution to W (z) shifts from W3(z) to W2(z),

then eventually to W1(z). This makes sense since the exit wake from B1 at-

tenuates as the entrance wake from B2 builds up, and finally for s = 0.68 m

the steady state wake is reached, which corresponds to the darkest curve in
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Figure 4.14: (Color) Evolution of W2(z) inside magnet B2 in beamline C by the-
ory prediction (See Eq. (4.112).). As s increases the wake “moves” toward pos-
itive z. For the darkest curve at s = 0.68 m, the wake becomes insignificant for
z < 5σz.

Figure 4.15: (Color) Evolution of W3(z) inside magnet B2 in beamline C by the-
ory prediction (See Eq. (4.112).). The wake attenuates for large s since all three
terms in W3 come from the first magnet B1.

Fig. 4.13. Note that the normalization factor W0 in all the plots depends on R1,

not R2. This explains why the range of the steady state wake is different in

Fig. 4.10 and Fig. 4.16.
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Figure 4.16: (Color) Evolution of W (z) inside magnet B2 in beamline C. The
curves are theory prediction using the sum of three wakes in Eq. (4.112), and
the dots are from Bmad simulation.

4.2.4 Beamline D

The purpose of beamline D is to test the formulas for case G and H. Similar to

beamline C, the total wake has contribution from six terms, grouped as:

W (z) = W1(z) +W2(z) +W3(z), (4.113)

W1(z) = WD,integral(z, x2, φ2), (4.114)

W2(z) = WD,boundary(z, x2, φ2) +W near
H2,boundary(z, x2, φ2, x), (4.115)

W3(z) = WH2,integral(z, x2, φ2, x, φ1) (4.116)

+W far
H2,boundary(z, x2, φ2, x, φ1) +WG2(z, x2, φ2, x, φ1), (4.117)

in which x2 = (s− 385 mm) is the location of the bunch center into the drift D2,

and φ2 is the total bending angle of B2. The six terms are grouped in the same

way as in Eq. (4.112), with the following changes in the case names: B→ D, F2

→H2, and E2→ G2. Fig. 4.17, 4.18, and 4.19 respectively show the evolution of

W1(z),W2(z), and W3(z) in D2 (s > 385 mm) as x2 increases.
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Figure 4.17: (Color) Evolution of W1(z) inside drift D2 in beamline D by theory
prediction (See Eq. (4.117).). The exit wake attenuates like as expected.

Figure 4.18: (Color) Evolution of W2(z) inside drift D2 in beamline D by theory
prediction (See Eq. (4.117).). As s increases the wake “moves” toward positive z
and attenuates.

Fig. 4.20 shows the total wake W (z) in D2 and the simulation results from

Bmad, which agree well. As s increases, the wake amplitude decreases as ex-

pected. However, one might note that the amplitude of W3(s) in Fig. 4.19 does

not monotonically decrease for all s. This occurs because the denominator of

u(θ1) in Eq. (4.104) (and therefore u(φ1) in Eq. (4.59) and Eq. (4.105)) changes

signs as x2 increases. This can only happen when the two magnets bend in the

opposite direction, so that the denominator is not always positive and increas-

ing with x2.
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Figure 4.19: (Color) Evolution of W3(z) inside drift D2 in beamline D by theory
prediction (See Eq. (4.117).). The wake eventually attenuates for large s (not
shown).

Figure 4.20: (Color) Evolution ofW (z) inside drift D2 in beamline D. The curves
are theory prediction using the sum of three wakes in Eq. (4.117), and the dots
are from Bmad simulation.

4.2.5 Discussion

Beamline A and B show that Bmad simulation agrees with the existing formu-

las for W (z) with one bending magnet. Moreover, Beamline C and D show how

to apply the new formulas for a system with two bending magnets, and agree-

ments with simulation results support that these formulas work. Note that the
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simplified formulas might give inaccurate results if γ or θ ( the observation an-

gle into either magnet ) is too small, or if x ( the drift length between the two

magnets ) is too large. In that case the un-approximated formulas have to be

used. While CSR simulation in Elegant has implemented the formulas with one

bending magnet, Bmad uses none of these approximated formulas (See the sec-

tion on CSR simulations for details.).

Rather than the traditional theory with only one magnet, the new theory has

to be used whenever magnets are similarly close. In addition, one can use these

formulas to calculate the energy loss Eloss =
∫
W (z)λ(z)dz and the increase in

energy spread due to CSR, as long as λ(z) remains unchanged. In reality the lon-

gitudinal distribution λ(z) might vary significantly due to a high bunch charge

or transverse particle motions. This extension of CSR theory from one bend

to two bends is essential for short-bend accelerators like CBETA. For more ex-

treme systems with CSR extending over three or more bends, no approximated

expressions have been derived using the Lienard-Wiechert formula, and numer-

ical simulations are recommended. Alternatively, an exact 1D model using the

Jefimenko’s form of Maxwell’s equations has been derived in [28].

4.3 Bmad CSR Simulation Overview

Subroutines have been established in Bmad to include CSR calculations [26].

Fig. 4.21 shows how Bmad divides a bunch of particles into a number of bins

(Nb) in the longitudinal direction. During beam tracking, Nb is constant, and the

bin width is dynamically adjusted at each time step to cover the entire bunch

length. The contribution of a macro-particle to a bin’s total charge is determined
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by the overlap of the particle’s triangular charge distribution and the bin. With

∆zb denoting the bin width and ρi denoting the total charge in the ith bin, the

charge density (λi) at the bin center is taken to be ρi/∆zb. In between the bin

centers, the charge density is assumed to vary linearly.

Figure 4.21: Bmad implementation of CSR. The bunch is divided into Nb bins in
the longitudinal direction for calculation of CSR kicks.

With integration by parts the CSR wake seen by the bunch can be written as:

W (z) =

∫ ∞
−∞

dz′
dλ(z′)

dz′
ICSR(z − z′), (4.118)

in which

ICSR(z − z′) = −
∫ z

−∞
w(z − z′′)dz′′. (4.119)

The energy kick ∆E received by a particle centered at the jth bin, after trav-

elling for a distance ∆s, is therefore modelled in Bmad as [26]:

∆E = ∆s

Nb∑
i=1

(λi − λi−1)
ÎCSR(j − i) + ÎCSR(j − i+ 1)

2
, (4.120)

in which ÎCSR(j) ≡ ICSR(z = j∆zb).

CSR calculations in Bmad within one bending magnet have been bench-

marked with CSR theory and other simulation codes including A&Y, GPT, and

elegant [26]. Additional benchmarking with a system of two magnets have been
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shown in the previous sections. Bmad CSR simulation also allows users to in-

clude the space charge calculation for high energy and the one dimensional vac-

uum shielding effect. In 2017 the Bmad library was further developed, which

can now handle the case when the design orbit of the beam does not follow the

reference orbit of the lattice [27]. This is exactly the case for the FFA beamline in

CBETA, which consists of displaced quadrupole magnets.

Given a bunch with fixed charge Q, the two most important parameters in

CSR simulations are the number of particles (Np) and bins (Nb). A large Np

generally increases the simulation accuracy at the cost of computation time. It

is usually recommended to haveNp ≥ 100k, but a beamline with more or longer

curved trajectories may require more. Choosing Nb is not as straightforward as

Np. A small Nb can result in inaccurate calculation of CSR kicks due to low

longitudinal resolution. However, if Nb is too large, the number of particles

per bin might become too small, resulting in numerical noise. A proper choice

of Nb therefore depends heavily on Np, the bunch parameters, and the lattice

itself. For the four test beamlines in the last section we have chosen Np = 400k

and Nb = 200. For a large lattice like CBETA, convergence tests with these

parameters are recommended to produce convincing results.

4.4 CBETA Simulation Results

The subsections below show the CSR simulation results with the CBETA 1-turn

and 4-turn mode for various CSR parameters. We track the bunch starting at

the end of the LINAC pass 1 (42 MeV) to the end of pass 8 for 4-turn mode (or

pass 2 for 1-turn mode, 6 MeV). The initial bunch distribution used is either the
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GPT beam or a Gaussian beam. The GPT beam has been pre-simulated using

GPT tracking up to the end of the LINAC pass 1 (42 MeV) to account for the

space charge effect at low energy [1]. The Gaussian beam is generated by Bmad

to have the same beam optics as the GPT beam. Unless being varied or specified

otherwise, the default CSR parameters used are Np = 106, Nb = 2500, Q = 5 pC,

and GPT beam as the initial bunch distribution.

4.4.1 4-turn with varying Np

As discussed, CSR simulation results can vary significantly based on the choice

of numerical parameters, especially for a large lattice like CBETA. To ensure the

results are physically representative, we perform a convergence test on Np in

this section. Fig. 4.22 shows the longitudinal phase space distribution recorded

at the end of LINAC pass 8 (6 MeV) with Np varying from 103 to 106. Fig. 4.23

and Fig. 4.24 show the corresponding number of particle loss (out of 106) and

the final rms energy spread σδ decrease as Np increases. The energy spread σδ

converges from more than 0.014 at Np = 100k to about 0.009 for Np > 800k. This

particular convergence test indicates that with Nb = 2500, Np > 800k is required

to produce legitimate results for CBETA’s 4-turn.

In general there can be multiple CSR parameters, and multi-dimensional

convergence tests may be required to produce the most physically represen-

tative results. The following subsection shows a test on Nb for 4-turn. For more

examples, see [33].
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Figure 4.22: The longitudinal phase space distribution at the end of LINAC pass
8 for the 4-turn CSR simulation, with Np ranging from 103 to 106.

Figure 4.23: The total particle loss (out of 106) for the 4-turn CSR simulation,
with Np ranging from 103 to 106.

4.4.2 4-turn with varying Nb

The last subsection shows the convergence test on Np, with Nb fixed at 2500.

Here we instead varyNb and fixNp at 106. Fig. 4.25 shows the longitudinal phase

space distribution recorded at the end of LINAC pass 8 (6 MeV) withNb varying

from 500 to 4000. Fig. 4.26 shows the corresponding change in the important

physical quantities. Although the final energy spread is similar for different Nb,

the number of particle loss increases from hundreds to almost four thousand
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Figure 4.24: The final rms energy spread for the 4-turn CSR simulation, with Np

ranging from 103 to 106.

as Nb increases. As discussed before, a large Nb might increase numerical noise

due to a decreased Np per bin. Since one can not determine whether the extra

particle loss is a numerical effect or due purely to CSR, it is difficult to determine

the optimal choice ofNb in this case. MoreNp might be required for a significant

range of Nb to give physically equivalent results.

Figure 4.25: The longitudinal distribution at the end of LINAC pass 8 for the
4-turn CSR simulation, with Nb ranging from 500 to 4000.
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Figure 4.26: The important physical quantities corresponding to the results in
4.25.

4.4.3 4-turn with varying Q

Unlike Np and Nb which are numerical parameters, the bunch charge Q is a

physical parameter. One primary objective of CSR simulations is to determine

the maximum allowed Q for CBETA.

Figure 4.27: The x− x′ and z − δ distributions after each of the 8 LINAC passes
for CBETA 4-turn with no CSR.

Figure 4.28: The x− x′ and z − δ distributions after each of the 8 LINAC passes
for CBETA 4-turn with Q = 1 pC.
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Figure 4.29: The x− x′ and z − δ distributions after each of the 8 LINAC passes
for CBETA 4-turn with Q = 5 pC.

Fig. 4.27 shows the longitudinal and horizontal phase space distributions of

the tracked bunch at the end of each LINAC pass, from 1 to 8, with no CSR ef-

fects. Fig. 4.28 and Fig. 4.29 show the corresponding results with CSR effects,

for Q = 1 pC and 5 pC respectively. As expected, both the energy spread and

beam emittance increase as Q increases. Moreover, the energy spread builds up

over the recirculation passes. Note that both x′ and δ are dimensionless quanti-

ties normalized by the reference momentum of each pass, which explains why

the spreads increase more severely during the four decelerating passes than the

four accelerating passes.

For Q = 1 pC, 215 out of a 106 particles have been lost during the final two

decelerating passes. However, all the surviving particles have a final energy

spread of less than ±7%, which is the acceptance limit of the CBETA beam stop

assuming no halo and other undesired effects. For Q = 5 pC, 658 out of a 106

particles have been lost for Nb= 2500. As discussed in the previous subsection,

the particle loss can come from numerical effects. These results show that, as

long as the particle loss can be dealt with ( potentially by varying beam optics

in the splitter sections ), it is promising for the 4-turn machine to reach its low

design current of 1 mA, which requires Q ≥ 3 pC at the maximum repetition
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rate of 325 MHz. During the decelerating passes, micro-bunching structures

can be seen in the longitudinal phase space. To what extent this is a physical or

a numerical effect requires further study.

4.4.4 1-turn with varying Q

Fig. 4.30 shows the final longitudinal phase space distributions, where the beam

has returned to 6 MeV, for different Q. Fig. 4.31 shows the corresponding par-

ticle loss and increase in energy spread. There is no particle loss up to Q =

75 pC, and all the surviving particles have an energy spread within the ±7%

limit. With the maximum repetition rate of 1.3 GHz, this corresponds to a beam

current of 97.5 mA, well exceeding the high design current of 40 mA. As Q fur-

ther increases, the CSR effect becomes more significant, causing greater increase

in energy spread and eventually significant beam loss.
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Figure 4.30: The z− δ distribution at the end of LINAC pass 2 for CBETA 1-turn
with various Q.

Figure 4.31: (color) The % particle loss (left, red dots) and the final rms energy
spread (right) with Q ranging from 5 pC to 1000 pC. The blue dots indicate %
particles with energy spread greater than ±7%.
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4.4.5 1-turn with varying Q, Gaussian beam

The purpose of tracking a Gaussian beam is to compare with the GPT beam

results regarding potential microbunching effects. Fig. 4.32 shows the longitu-

dinal phase space distributions of the tracked bunch at the end of LINAC pass 2

for different Q. Fig. 4.33 shows the corresponding particle loss and final energy

spread.

Figure 4.32: The z− δ distribution at the end of LINAC pass 2 for CBETA 1-turn
with a Gaussian beam for various Q.

Comparison between Fig. 4.31 and Fig. 4.33 shows that the final energy

spreads increases with Q in a similar way for both GPT and Gaussian beam.

For Gaussian beam the particle loss occurs at Q = 125 pC, higher than the 75 pC

for GPT beam. However a small fraction of the particles in Gaussian beam ex-

ceed the ±7% limit even at low Q (see the blue dots in Fig. 4.33), which is due

likely to mismatched beam optics. At high Q the longitudinal microbunching

94



Figure 4.33: (color) The % particle loss (left, red dots) and the final rms energy
spread (right) with a Gaussian beam, with Q ranging from 5 pC to 1000 pC. The
blue dots indicate % particles with energy spread greater than ±7%.

structure is significant for the GPT beam yet not for Gaussian beam. The struc-

ture likely comes from the initial microbunching structure of the GPT beam. The

similarity in energy spreads between the two beams imply that microbunching

instability is not driven by CSR severely to cause additional energy spread.

4.4.6 1-turn with varying bunch length, Gaussian beam

According to CSR theory, the characteristic CSR energy kick scales with longitu-

dinal bunch length σz as σ−4/3
z (see Eq.(4.106)). This means a longer bunch length

could reduce CSR effects, and simulations with varying σz are run to confirm

this prediction. Both GPT beam and Gaussian beam used before this section has

an initial σz of 1.0 mm. Fig. 4.34 shows the final longitudinal phase space dis-

tributions with a Gaussian beam for different σz at Q = 250 pC. Fig. 4.35 shows

the corresponding % particle loss and final energy spread. As σz increases the

beam distribution becomes less distorted, and for σz larger than 1.5 mm there

is no longer particle loss. However the energy spread does not monotonically

decrease as σz increases. The increasing energy spread for σz > 2.0 mm likely
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comes from the extra RF curvature picked up during deceleration. Overall the

results implies that increasing σz can greatly mitigate the CSR effects for CBETA

1-turn at least up to Q = 250 pC.

Figure 4.34: The final z − δ distribution for CBETA 1-turn with various σz.

Figure 4.35: (color) The % particle loss (left, red dots) and the final rms energy
spread (right) with σz ranging from 0.3 mm to 3.0 mm. The blue dots indicate %
particles with energy spread greater than ±7%.

4.4.7 Conclusion

The ultra-relativistic CSR wake expressions with one bending magnet formu-

lated in [22] and [23] have been rederived and extended to a system with two
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bending magnets, and can now be applied for the case when the wake from the

first magnet leaks into the second magnet. This can occur to beamlines with

magnets placed close to each other, such as the FFA beamline of CBETA. We

show that the new terms for wake leakage from one magnet to the next are very

relevant. The derived formulas have been compared with Bmad CSR simula-

tion, and agreements have been observed.

Bmad CSR simulations have been run for the CBETA 1-turn and 4-turn lat-

tice, and increase in energy spread with the bunch charge and the number of

recirculation passes have been observed. For the 1-turn mode the bunch charge

can be raised up to 75 pC without particle loss or severe increase in the energy

spread. For the 4-turn mode at 5 pC, there is less than 0.1% particle loss, but

the energy spread is acceptable. More convergence tests on the CSR numeri-

cal parameters are required to study whether the particle loss is a numerical

or physical effect. Mitigation to the CSR effects including increasing the bunch

length and introducing metal shielding have been proposed. While the former

has been simulated and gives promising results, the latter requires significant

computational power.
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CHAPTER 5

ORBIT CORRECTION AND TOLERANCE STUDY

Besides BBU and CSR, additional work has been performed to study the

optical tolerance of the CBETA lattice under various random errors. The goal

here is to calculate above what error magnitude the beam emittance becomes

unacceptable even after multipass orbit correction.

5.1 FFA Orbit Correction Example

This section describes an example of Bmad correcting the FFA orbits using SVD

optimization with a set of random quadrupole field error introduced to all the

FFA magnets. The details on how SVD optimization works can be found in [35],

and are not covered here. The top half of Fig. 5.1 shows the distorted orbits

when all the FFAG quadrupole magnets incur a 0.5% Gaussian random error in

their b1 gradient. Clearly the orbits are distorted, and becomes non-periodic in

FA and non-zero in ZA. The bottom half of Fig. 5.1 shows the recovered orbits

after correction using all the horizontal correctors.

The recovered orbits are not the same as the design orbits for two main rea-

sons. First, the orbit correction algorithm can fix the orbits only at the location

of BPMs, and is insensitive to orbit distortions between the BPMs. Second, for

each FFA cell there are 4 horizontal orbit values to correct, yet only one hori-

zontal corrector to vary (same for the vertical orbits). This means the system is

mathematically over-constrained, and the orbits cannot be fully corrected back

to zero residues in general. Besides introducing extra correctors, one way to

improve the correction results is to assign relative weights to the correctors [35].
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Figure 5.1: The top half shows the orbit distortion with all FFA quad magnets
subjected to a 0.5% Gaussian random error in their b1 gradient. The bottom half
shows the recovered orbits after SVD orbit correction.

This method involves further study in the SVD optimization.

5.2 Result statistics

For the rest of this chapter, the orbit correction process to a particular assign-

ment of errors, like the example shown in the last section, is referred to as “one

simulation”. To determine the tolerance of the lattice subjected to certain error,

many simulations are required to obtain representative statistics. Fig. 5.2 illus-

trates the general procedure to study the tolerance of a particular error source,

and Fig. 5.3 describes the procedure in details, including the numerical defini-

tion of “individual limit”.
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Figure 5.2: A schematic diagram to determine the tolerance of a lattice under
particular error source(s).

Figure 5.3: The detailed procedures to determine the individual limit of a par-
ticular error.

For a chosen error type and magnitude we run N=100 simulations to obtain a

statistically representative “µ+1σ” (See Fig. 5.3 for details). We call this quantity

the “1σ increase” in X (or Y) emittance (or beam size). Fig. 6 shows that the 1σ

increase in X emittance of the 42 MeV beam grows with the error magnitude

of b1 gradient. At 0.66% error in b1 gradients, the 1σ increase in X emittance

reaches 10%. However, we also need to check the growth in the Y emittance

and transverse beam sizes. Table 5.1 summarizes the required error magnitude
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for each 1σ increase to hit 10%. It turns out that the 1σ increase in Y beam size

reaches 10% at 0.27% error in b1 gradient, earlier than the other three quantities.

So the individual limit of b1 gradient error, by our definition, is 0.27%.

Figure 5.4: The growth of 1σ increase in X emittance of the 42 MeV beam as the
error magnitude in b1 gradient increases. The green rectangle shows that 10%
increase is reached when b1 gradient magnitude hits 0.66%.

Quantity Error magnitude in b1 gradient
(42 MeV beam) to hit 10% 1σ increase

X emittance 0.66%
Y emittance 0.90%
X beam size 0.37%
Y beam size 0.27%

Table 5.1: The tolerance of the FFA beamline subjected to b1 gradient error.

Note that these individual limits for FFA change if we look at the beam at

a different design energy. We choose the 42 MeV beam because a lower energy

beam is more subjected to field errors. However, as described before, all four or-

bits are accounted for during orbit correction. Since the beam only experiences

dipole and quadrupole fields in the FFA beamline, one might wonder why the

beam emittances increase as field error increases, even after correction. The rea-

son is that orbit correction schemes implemented so far only fix the orbits, not
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the beam optics and dispersion. Since the beam has an energy spread, the un-

controlled dispersion function due to field errors causes increase in emittances

and beam sizes.

5.3 Individual limits of Various error types

Similar to the b1 gradient error, 100 simulations were run to find out the indi-

vidual limit of other error types. Table 5.2 shows the individual limits of a few

common error sources. All these limits are above the design specification of

CBETA, implying great tolerance of the design lattice.

Table 5.2: The individual limit of common error types for the FFA beamline.

It’s also important to find out the tolerance for higher order multipole fields,

defined in Bmad as:

Bx + iBy =
bn + ian

L
(x+ iy)n, (5.1)

in which bn and an are the strength of normal and skew multipole fields for

n ≥ 2. For instance, b1 is the normal quadrupole gradient, and a2 is the skew
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sextuple field strength. L is the length of the magnet, and x and y are measured

from the pipe center. For physically meaningful comparison, we normalize the

multipole strengths using a dimensionless unit u0:

bn =

[
10−4 GL

rn−1
0

]
u0, (5.2)

in which G is the quadrupole gradient of either QF or BD, and r0 is chosen to

be 25 mm (about the extent of the highest and lowest energy orbit from the

pipe center). Table 5.3 shows the individual limit of all the normal and skew

multipoles for the FFA beamline, reported in u0.

Normal Individual Skew Individual
multipole limit (u0) multipole limit (u0)

b2 37 a2 140
b3 30 a3 90
b4 26 a4 80
b5 21 a5 65
b6 21 a6 63
b7 19 a7 58
b8 21 a8 56
b9 18 a9 53

Table 5.3: The individual limit of normal and multipole up to 20-pole, reported
in the normalized unit u0.

5.4 Combined limit of multipole field errors

In reality multiple sources of errors coexist, and the individual limits are insuf-

ficient to capture the combined effect. Therefore we need a define a statistically

meaningful “combined limit”. For now we consider just the 16 multipole field

errors in table 5.3. In the simulation we assign each FFA magnet a 16-vector:

v =

(
bn

lim bn
,

an
lim an

)
, n = 2, 3...9, (5.3)

103



in which lim bn and lim an are the individual limits from table 5.3 which serve

as relative weightings between the multipoles. The value of each element in v

is chosen randomly from the normal Gaussian distribution (µ = 0, σ = 1). Since

there are 16 errors present, the combined error must be scaled down properly.

A number u is chosen randomly from the uniform distribution (0, 1], and the

magnitude of v is scaled down to be u(1/16). This allows v to point at a uniformly

random point in the 16-D hyper-sphere with radius one. We further introduce

a unitless quantity “error scale” which scales all the elements in v by the same

factor. By definition, the magnitude of v also scales by the same factor, so we

can use the magnitude as a measure of the combined error.

Figure 5.5: The growth of 1σ increase in X beam size as the combined error
scale of 16 multipoles increases. The green rectangle shows that 10% increase is
reached when the error scale hits 0.75%.

Fig. 5.5 shows the 1σ increase in X beam size grows with the error scale

increases from 0 to 1 at a step of 0.1. For each error scale, 1000 simulations were

run to obtain representative statistics. At an error scale of 0.75, 1σ increase in X

beam size reaches 10%, earlier than the other three quantities of interest. So the

combined limit for FFA multipole field error is reported as:√
Σn

(
bn

lim bn

)2

+

(
an

lim an

)2

< 0.75. (5.4)
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The tolerance studies provides a quantitative figure of merit for the actual

components in the accelerators. For instance, Fig. 5.6 shows the measured com-

bined multipole error of 214 manufactured FFA magnets before and after tuning

[36]. The average error scale is 0.094 after tuning, which is well below the sim-

ulated tolerance of 0.75. This indicates acceptable field quality along the FFA

beamline.

Figure 5.6: (Color) Measured combined multipole error (i.e. magnitude of the
vector v in Eq. 5.3) of 214 FFA magnets before and after tuning. The errors
reduce significantly after tuning (green bars). The red line indicates an error of
0.375, half of the simulated tolerance of 0.75.

5.5 Future studies

Tolerance studies with other orbit correction schemes can still be performed for

the CBETA lattice. One important proposal is to use the entire 4-turn lattice with

one design orbit, instead of using only the FFA beamline with four independent

orbits. Although this better simulates the reality, it generally makes optimiza-
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tion computationally more intensive. For instance, each BPM in the FFA beam-

line would have, instead of four, seven orbit readings to be corrected, which con-

strain the system even more. Since errors propagate from early passes to later

passes, it is recommended to correct the orbit sections by sections. This has

been performed in reality when CBETA operators manage to guide the beam

through the sections. Correctors in the splitter sections are particularly useful

in this procedure since they affect the orbit of each pass more independently.
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APPENDIX A

DERIVED FORMULAS FOR THE 2-BEND CSR THEORY

The two tables below summarizes the important formulas derived in the

four odd cases and four even cases in the CSR chapter.

Case A(×4ke2) yp ∆(y = yp) W (s)

A 1/(Rθ) 1
2
γRθ2 1

6
Rθ3

A× λ (s−∆(y = yp))

C 1/(Rφ+ 2x) 1
2
γ(Rφ+ 2x)φ 1

6
(Rφ+ 3x)φ2

E
(φ1 ± θ2)/(R1φ

2
1 + 2xφ1

1
2
γ(R1φ

2
1 + 2xφ1

1
6
[(R1φ1 + 3x)φ2

1

+2R2φ1θ2 ±R2θ
2
2) +2R2φ1θ2 ±R2θ

2
2) +R2θ2(3φ2

1 ± 3φ1θ2 + θ2
2)]

G
(φ1 ± φ2)/(R1φ

2
1 + 2xφ1

1
2
γ(R1φ

2
1 + 2xφ1 + 2R2φ1φ2

1
6
[(R1φ1 + 3x)φ2

1 +R2φ2(3φ2
1

+2R2φ1φ2 ±R2φ
2
2 + 2x2(φ1 ± φ2)) ±R2φ

2
2 + 2x2(φ1 ± φ2)) ±3φ1φ2 + φ2

2) + 3x2(φ1 ± φ2)2]

Table A.1: The normalization factor A, the yp which approximately maximizes
w(y), and the wake expression W (s) for odd cases. The “± ” sign indicates “ + ”
if the two magnets bend in the same direction, and “ − ” if opposite. Note that
the expressions for W (s) can only be applied if the drift length before the (first)
magnet is much longer than yp.

Case u(×4ke2) Boundary term(s) of W (s) Integral term of W (s)

B 1/(Rθ) −u(θ = θmax)λ(s−∆max)

−
∫ s−∆min

s−∆max

u
∂λ(s′)

∂s′
ds′

D 1/(Rθ + 2x) −u(θ = φ)λ(s−∆max)

F
(θ1 ± θ2)

R1θ2
1 + 2xθ1 ± 2R2θ1θ2 ±R2θ2

2 u(θ1 = 0)λ(s−∆min)

H
(θ1 ± φ2)

R1θ2
1 + 2xθ1 ± 2R2θ1φ2 ±R2φ2

2 + 2x2(θ1 ± φ2)
−u(θ1 = φ1)λ(s−∆max)

Table A.2: The function u and the wake expression W (s) for even cases. Note
that for case B and D there is one boundary term, and for case F and H there are
two boundary terms (the near one at θ1 = 0 and the far one at θ1 = φ1).
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