

Linac-based light sources

Ivan Bazarov Cornell University

- Synchrotron radiation sources of today
- Motivation for a linac based source
- Physics of high-brightness electron injectors
- Energy Recovery Linac (ERL) Phase 1
- Summary

- Relativistic free electrons the only medium for tunable light production in widest spectral range
- Hard x-ray range is the subject of this talk

- Relativistic free electrons the only medium for tunable light production in widest spectral range
- Hard x-ray range is the subject of this talk

Brilliance / Spectral Brightness

FLUX OF PHOTONS IN UNIT SPECTRAL RANGE

(SOURCE AREA) X (BEAM DIVERGENCE)

Units: Photons/s/mm²/mrad²/0.1% bandwidth

• Average brightness: measure of transversely coherent flux

$$F_c = B_{avg} \left(\frac{\lambda}{2}\right)^2$$

• **Peak brightness:** proportional to the number of photons per coherence volume ≡ the photon degeneracy

$$\Delta_{c} = B_{peak} \left(\frac{\lambda}{2}\right)^{3} \frac{\Delta \lambda}{\lambda} \frac{1}{c}$$

SR/XFEL/ERL

Exp1: diff. imaging of proteins

R. Neutze, et al., *Nature*, **406**, 752 (2000)

Fienup's algorithm

Briefly: calculations were done for T4 lysozyme (diameter 32 Å, $N_{\rm C} \sim 1000$); flux 4×10⁶ X-rays/Å² with ~ 2000 primary ionization events; elastically scattered ~ 200 photons. If pulse is sufficiently short (<10 fs), 5×5×5 lysozyme nanocrystal will scatter to <2Å resolution.

Key feature: coherent x-rays

Radiation damage: biomaterials

Shen, Bazarov, Thibault, J. Sync. Rad., Vol. 11 (2004) 432

Broad class of pump-probe experiments providing structural (core e^{-} 's) conformational changes in the initial stages (mol. vibrational timescale 10's fs) of photo-induced reactions

Time-resolved Laue Crystallography (Phil Anfinrud, NIH)

I.V. Bazarov, LASSP seminar, 04/26/07

Storage ring

Emittance (hor.), Energy Spread, Bunch Length

Tighter focusing (higher tune) \rightarrow stronger 6-poles for chromaticity correction \rightarrow smaller dynamic aperture & lifetime

- Beam never in equilibrium 6D phase space (x,p_x,y,p_y,E,t) defined by the electron source
- Longitudinal phase space (E,t) "gymnastics": exchange momentum spread for shorter bunches (3 orders of magnitude)
- 'Colder' intense beams (transverse coherence)

Emittance basics

Diffraction limited e-beam

electron phase space

 In properly tuned undulator x-ray phase space is convolution of e-beam with diff. limit

x-rays phase space

- **Goal**: for 1 Angstrom $\rightarrow \varepsilon_x \sim \lambda/4\pi = 8 \text{ pm}$ geometric, or $\varepsilon_{nx} = 0.08 \ \mu\text{m}$ if energy is 5GeV
- E.g. best storage ring performance as of today: $\varepsilon_x / \varepsilon_y = 3000 / 15 \text{ pm}$

Energy recovery concept

Energy recovery concept

Energy recovery concept

ERL: e-source limited

• E.g. ESRF $I_{avg} = 200 \text{ mA},$ $\varepsilon_{x,y} = 4 \text{ nm} / 0.02 \text{ nm}$

• ERL $I_{avg} = 100 \text{ mA}$, $\varepsilon_{x,y} = 0.1 \text{ nm} (\varepsilon_{nx,y} = 1 \text{ } \mu\text{m} \text{ if 5 GeV})$ is superior + bonus short bunches

Caveat: state-of-the-art in high brightness injectors $I_{avg} \leq 10$ mA; $\varepsilon_n \geq 10 \ \mu m \ (\varepsilon_n \sim 2 \ \mu m \ for \ pulsed)$

Overall missing \geq *3 orders of magnitude in beam brightness*

ERL Phase1

Max Avg. Current100 mACharge / bunch1 - 400 pCEmittance (norm.) $\leq 2 \mu \text{m}@77 \text{ pC}$

 Injection Energy 5 – 15 MeV

 $E_{acc} @ Q_0$ 20 MeV/m @ 10¹⁰

 Bunch Length
 2 – 0.1 ps

Eds. Gruner, Tigner; Bazarov, Belomestnykh, Bilderback, Finkelstein, Fontes, Krafft, Merminga, Padamsee, Shen, Rogers, Sinclair, Talman, ERL prototype proposal to the NSF, 2001

ERL Phase1^{1a}

Max Avg. Current100 mACharge / bunch1 - 400 pCBunch Length2 psEmittance (norm.) $\leq 2 \mu \text{m} @77 \text{ pC}$

Eds. Gruner, Tigner; Bazarov, Belomestnykh, Bilderback, Finkelstein, Fontes, Krafft, Merminga, Padamsee, Shen, Rogers, Sinclair, Talman, ERL prototype proposal to the NSF, 2001

Beam breakup: challenge

position [m]

Highest current recirculated in SRF linac was 4.5 mA in year 2001

position [m]

1.5E+01

position [m]

- BBU code & theory developed for ERLs Bazarov, Hoffstaetter, EPAC (2004) 2194 Hoffstaetter, Bazarov, Phys. Rev. ST: AB 7, 054401 (2004)
- Benchmarked with good accuracy in JLAB FEL Douglas, Jordan, Merminga, Pozdeyev, Tennant, Wang, Smith, Simrock, Bazarov, Hoffstaetter, Phys. Rev. ST: AB 9, 064403 (2006)
- Various suppression techniques successfully tested

Phase 1a

- HV DC gun based photo-injector
- up to 100 mA average current, 5-15 MeV beam energy
- norm. rms emittance $\leq 1 \mu m$ at 77 pC/bunch
- rms bunch length **0.6 mm**, energy spread **0.1%**

Bazarov, Sinclair, PAC2003, IEEE 0-7803-7739-9 (2003) 2062

Photo-gun

Two main limiting mechanisms:

• Phase space scrambling due to nonlinear space charge

• Photocathode thermal emittance $\varepsilon_{n,th} = \sigma_{x,y} \sqrt{\frac{kT}{mc^2}}$ transverse temperature of photoemitted electrons

Photocathode requirements

(1) photon excites electron to a higher-energy state;
 (2) electron-phonon scattering (~0.05 eV/collision);

(3) escape with kinetic energy in excess to E_{vac}

Ideal photocathode:

- $E_{th} \rightarrow kT \leq 25 \text{ meV}$
- response time ≤ 1 ps
 high QE ≥ 10%

General trend • $\lambda \uparrow Q.E. \downarrow kT \downarrow \tau \uparrow$

Superlattice photocathode?

- equipped to accurately (~meV) measure transverse temp. of e⁻ at different wavelengths
- photoemission temporal response resolution (~ps)

Gun development lab in Wilson

Space charge basics

Beam envelope equation:

$$\ddot{R} + K_{f}R = \underbrace{\frac{e}{m\gamma} [E_{r}^{s.c.} - \beta c B_{\theta}^{s.c.}]}_{m\gamma} + \left(\frac{4\varepsilon_{n}^{th}c}{\gamma}\right)^{2} \frac{1}{R^{3}}$$
$$\frac{e}{m\gamma^{3}} E_{r}^{s.c.}(R) = \frac{1}{2}\omega_{p}^{2}R$$
$$\omega_{p}^{2} = \frac{e^{2}n}{\varepsilon_{0}\gamma^{3}m}$$

Beam temperature

Diffraction limited beam at $1\text{\AA} \rightarrow \varepsilon_x$ = 8pm at 5GeV $\rightarrow \varepsilon_{nx} = 0.08 \ \mu\text{m}$ 10 MV/m gradient $\rightarrow \sigma_{laser} = 0.3 \ \text{mm}$ Transverse temp. needed $kT = 25 \ meV$

S.c. compensation concept

Serafini PRE **55**, 7565

$$\sigma'' + K_r \sigma = \frac{I}{2I_0(\beta\gamma)^3 \sigma} + \frac{\epsilon_{n,pl}^2}{(\beta\gamma)^2 \sigma^3}.$$

focusing s.c. emittance
Needle beam: $I \rightarrow Ig(\zeta)$
 $\sigma_{eq}(g(\zeta)) = \left(\frac{Ig(\zeta)}{2I_0(\beta\gamma)^3 K_r}\right)^{1/2}$ equilibrium flow condition for slice
 $\delta\sigma''(\zeta) + \left[K_r + \frac{Ig(\zeta)}{2I_0(\beta\gamma)^3 \sigma_{eq}^2 g(\zeta)}\right] \delta\sigma(\zeta) = 0$ or
oscillation frequency current independent
 $\delta\sigma''(\zeta) + 2K_r \delta\sigma(\zeta) = 0,$

S.c. compensation concept

- Cut the number of decision variables to some reasonable number (2-4) perhaps by using a simplified theoretical model to guide you in this choice
- Large regions of parameter space remain unexplored
- Optimize the injector varying the remaining variables with the help of a space-charge code to meet a fixed set of beam parameters (e.g. emittance at a certain bunch charge and a certain length)
- One ends up with a *single-point* design without capitalizing on beneficial trade-offs that are present in the system

Primary challenge in exploring the full parameter space is computational speed

Doing it faster

- work harder
- work smarter
- get help

- processor speed
- algorithms
- parallel processing

Solution: use parallel MOGA

MultiObjective Genetic Algorithm

- throw in all your design variables
- map out whole Pareto front, i.e. obtain multiple designs all of which are optimal
 use realistic injector mode

e optimal Master Genetic operators: selection, cross-over, etc.

Slaves Objectives evaluation

maximize subject to

$$\begin{array}{l}
f_m(x_1, x_2, \dots, x_n), & m = 1, 2, \dots, M; \\
g_j(x_1, x_2, \dots, x_n) \ge 0, & j = 1, 2, \dots, J; \\
x_i^{(L)} \le x_i \le x_i^{(U)}, & i = 1, 2, \dots, n.
\end{array}$$

Definition 1. A solution \mathbf{x}_a is said to dominate the other solution \mathbf{x}_b if the solution \mathbf{x}_a is not worse than \mathbf{x}_b in all objectives and \mathbf{x}_a is strictly better than \mathbf{x}_b in at least one objective. In other words, $\forall m \in 1, 2, ..., M$: $f_m(\mathbf{x}_a) \geq f_m(\mathbf{x}_b)$ and $\exists m' \in 1, 2, ..., M$: $f_{m'}(\mathbf{x}_a) > f_{m'}(\mathbf{x}_b)$.

Definition 2. Among a set of solutions \mathcal{P} , the nondominated subset of solutions \mathcal{P}' are those that are not dominated by any member of the set \mathcal{P} .

When the set \mathcal{P} is the entire search space resulting nondominated set is called the

Pareto-optimal set.

Bazarov, Sinclair, Phys. Rev. ST:AB 8, 034202 (2005) Bazarov, Padamsee, PAC (2005) 2188

Vilfredo Pareto, 1848-1923

May 1, 2007

Evolving into optimal injector design

Parallel Multiobjective Evolutionary Algorithm

Fields: DC Gun Voltage (300-900 kV) 2 Solenoids Buncher SRF Cavities Gradient (5-13 MV/m) SRF Cavities Phase

Bunch & Photocathode: E_{thermal} Charge Positions: 2 Solenoids Buncher Cryomodule

Laser Distribution: Spot size Pulse duration (10-30 ps rms) {tail, dip, ellipticity} × 2

Total: 22-24 dimensional parameter space to explore

Optimization results

FIG. 11: Longitudinal emittance vs. bunch length for various

FIG. 10: Transverse emittance vs. bunch length for various charges in the injector (nC).

optimization problem:

minimize emittance minimize bunch length maximize bunch charge

charges in the injector (nC).

May 1, 2007

Closer look: 80 pC

- Linac-based source to put Cornell on the forefronts of synchrotron radiation science for many years to come (both spontaneous and stimulated SR)
- Key to feasibility of ERL is the very high current, high brightness electron source (in the works)
- Plenty of opportunities for interdisciplinary exchange (photocathodes, surface science, laser technology, beam diagnostics & instrumentation)

X-ray light source dev. team

I.V. Bazarov, LASSP seminar, 04/26/07

Thank you!

Backup slides

- About 70 light sources worldwide based on storage ring technology (VUV to <u>hard X-rays</u>), new ones are being built / designed
- >20 (small) FELs operational (far IR to VUV)
- 3 XFELs in construction / committed to, plus half a dozen in earlier stages of planning (soft to <u>hard X-rays</u>)
- 3 labs seriously consider building ERL as a <u>hard</u>
 <u>X-ray</u> light source

Linac based approach

Linac based approach

Contributors to emittance

Thermal (cathode)

- Low thermal energy photocathodes
- Min laser spot size
- Max gun voltage

- Rapid acceleration
- 'adiabatic' focusing and bunching
- Transverse laser shaping
- Temporal pulse shaping (fast emission photocathodes)

- short bunch length
- tight focus
- reduced field gradient

helps here, neutral elsewhere

helps here, may harm elsewhere

• Virtual injector allows absolute control of parameters, real system with a dozen of sensitive parameters will not

Tolerances for optimum

- Avg. brightness
- Short pulses (< ps) & peak brightness

- Avg. brightness
- Short pulses (< ps) & peak brightness

State-of-the-art: BOEING gun

Photocathode Performance:

Photosensitive Material: Quantum Efficiency: Peak Current: Cathode Lifetime: Angle of Incidence:

Gun Parameters:

Cathode Gradient: Cavity Type: Number of cells: RF Frequency: Final Energy: RF Power: Duty Factor:

Laser Parameters:

Micropulse Length: Micropulse Frequency: Macropulse Length: Macropulse frequency: Wavelength: Cathode Spot Size: Temporal and Transverse Distribution: Micropulse Energy: Energy Stability: Pulse-to-pulse separation: Micropulse Frequency:

Gun Performance:

Emittance (microns, RMS): Charge: Energy: Energy Spread:

K₂CsSb Multialkali

5% to 12% 45 to 132 amperes 1 to 10 hours near normal incidence

26 MV/meter Water-cooled copper 4 433 x10⁶ Hertz 5 MeV(4-cells) 600 x10³ Watts 25%, 30 Hertz and 8.3 ms

53 ps, FWHM 27 $\times 10^{6}$ Hertz 10 ms 30 Hertz 527 nm 3-5 mm FWHM gaussian, gaussian 0.47 microjoule 1% to 5% 37 ns 27 $\times 10^{6}$ Hertz

5 to 10 for 1 to 7 nCoulomb 1 to 7 nCoulomb 5 MeV 100 to 150 keV

433 MHz RF Gun

32 mA avg. current

State-of-the-art: JLAB FEL inj.

500 kV (350) DC gun

- max current 9.1 mA, routine 5 mA
- best simulated normalized emittance
- 5 μ m, measured ≥2 larger at 60 pC

9.1 mA max avg. current

ILC linac optimal front

10 bounded decision variables, 10 constraints

ILC linac optimization

Basics of sync. rad. production

in e⁻ frame

Flux in the central cone

$$\dot{N}_{ph}\Big|_{n} = \pi \alpha N \frac{\Delta \omega}{\omega_{n}} \frac{I}{e} g_{n}(K) \leq \overline{\pi \alpha \frac{I}{e} \frac{g_{n}(K)}{n}}$$

Inefficient! only 10⁻⁸ e-beam power converted

Radiation field from a single k^{th} electron in a bunch:

 $E_k = E_0 \exp(i\omega t_k)$

 $b.f. = \frac{1}{N} \sum_{k=1}^{N_e} \exp(i\omega t_k)$

Radiation field from the whole bunch \propto bunching factor (*b.f.*)

Radiation Intensity:

 $I = I_0 |b.f.|^2 N_e^2$

single electron

1) "long bunch": $|b.f.|^2 \sim 1/N_e \implies I = I_0 N_e$ incoherent (conventional) sync.rad

 N^2 (EFL_2) sync.rad

2) "short bunch" or μ -bunching: $|b.f.| \le 1 => I \sim I_0 N_e^2$ coherent (FELs) sync.rad

Prerequisites for e⁻-bunch:

diffraction-limited emittance peak current 3-5 kA energy spread 10⁻⁴

Intense relativistic electron bunch becomes effective gain medium (e.g. use seed / amplifier setup)

- Geometric optics $B(\vec{x}, \vec{\varphi}; z) = \frac{d^4 F}{d^2 \vec{x} d^2 \vec{\varphi}}$
- Wave optics (Wigner distribution function)

$$B(\vec{x},\vec{\varphi};z) = \frac{d\omega}{\hbar\omega} \frac{2\varepsilon_0 c}{\lambda^2 T} \int d^2 \vec{y} \left\langle E^*_{\omega,x}(\vec{x}+\vec{y}/2;z)E_{\omega,x}(\vec{x}-\vec{y}/2;z) \right\rangle e^{-ik\vec{\varphi}\cdot\vec{y}}$$

- Gaussian laser beam $\rightarrow \sigma_x \sigma_{x'} = \lambda/4\pi$
- Or from uncertainty principle (light emittance): $std(x)std(p_x) \ge \hbar/2$,

$$p_{x} \approx px' = \hbar kx',$$

$$\varepsilon_{x} = std(x)std(x') \ge 1/2k = \lambda/4\pi \qquad \varepsilon_{x,di}$$

Photocathode requirements

- (1) photon excites electron to a higher-energy state;
- (2) electron-phonon scattering (~0.05 eV lost per collision);
- (3) escape with kinetic energy in excess to E_{vac}

Ideal photocathode:

- $E_{th} \rightarrow kT \leq 25 \text{ meV}$
- response time ≤ 1 ps
- high $QE \ge 10\%$
- robust
- *h*v close to bandgap 'cold' electrons, but long response (~10ps), low Q.E.
- currently studying GaAs, GaAsP
- other possibilities GaN, Al-doped GaAs
- dream: superlattice cathode

Photocathode dev. opportunities

Transverse temp. of e⁻ at different wavelengths

Gun development lab in Wilson

Temporal response with ps resolution

electron shape along the injector corresponding to small emittance

Cathode lifetime

Cathode Field $\leftarrow E_{th}$ cathode

Emittance compensation

Axial cross section of bunch charge at cathode

Very sensitive to optics & bunch distribution details; Need computer modeling

Transverse phase space plots: (a) at cathode; (b) after drift; (c) after lens; (d) more drift

Challenges

- Achieve gun voltage of $\geq 500 \text{ kV}$
- Demonstrate photocathode longevity
- Cleanly couple 0.5 MW RF power into the beam without affecting its transverse emit.

- Control non-linear beam dynamics: over a dozen of sensitive parameters that need to be set *just right* to achieve the highest brightness
- Instrumentation and tune-up strategy
- Drive laser profile programming (both temporal and spatial)

A bigger picture

Mission

- Maintain vibrant/*diverse* acc. physics program
- Provide *world-class x-rays* to CHESS users
- Future light source and new accel. technology *development*

3-staged approach to ERL

I – upgrade to CESR to put CHESS on the synch. rad. science frontier
II – 5 GeV SRF linac with 10's fs pulse capability & XFEL friendly
III – diffraction-limited ERL once injector performance is established