Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE)

Overview of ERL R&D Towards Coherent X-ray Source

Ivan Bazarov

Cornell University

Acknowledgements

 Matthias Liepe for SRF slides; Georg Hoffstaetter for slides from his ERL'11 talk – and by proxy to the entire international ERL community

• Cornell team:

- D. H. Bilderback, M. G. Billing, J. D. Brock, B. W. Buckley, S. S. Chapman, E. P. Chojnacki, Z. A. Conway, J. A. Crittenden, D. Dale, J. A. Dobbins, B. M. Dunham, R. D. Ehrlich, M. P. Ehrlichman, K. D. Finkelstein, E. Fontes, M. J. Forster, S. W. Gray, S. Greenwald, S. M. Gruner, C. Gulliford, D. L. Hartill, R. G. Helmke, G. H. Hoffstaetter, A. Kazimirov, R. P. Kaplan, S. S. Karkare, V. O. Kostroun, F. A. Laham, Y. H. Lau, Y. Li, X. Liu, M. U. Liepe, F. Loehl, L. Cultrera, C. E. Mayes, J. M. Maxson, A. A. Mikhailichenko, D. Ouzounov, H. S. Padamsee, S. B. Peck, M. A. Pfeifer, S. E. Posen, P. G. Quigley, P. Revesz, D. H. Rice, D. C. Sagan, J. O. Sears, V. D. Shemelin, D. M. Smilgies, E. N. Smith, K. W. Smolenski, A. B. Temnykh, M. Tigner, N. R. A. Valles, V. G. Veshcherevich, Z. Wang, A. R. Woll, Y. Xie, Z. Zhao
- NSF DMR-0807731 for ERL R&D support at Cornell

3

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

Cornell ERL white paper (2000)

CLASSE

http://erl.chess.cornell.edu/papers/2000/ERLPub00_1.pdf

White Paper

Synchrotron Radiation Sources for the Future

Sol Gruner^{1,2,3}, Don Bilderback^{1,4}, Maury Tigner^{2,5} ¹ Cornell High Energy Synchrotron Source (CHESS) ² Department of Physics ³ Laboratory of Atomic and Solid State Physics (LASSP) ⁴ School of Applied and Engineering Physics ⁵ Laboratory of Nuclear Studies (LNS) Cornell University, Ithaca, NY 14853

discusses 10^23 brightness (s.u.) out of an ERL

 Geoff Krafft and Dave Douglas talk about ERL-based X-ray light source around that time (slightly earlier); MARS proposal by Gennady Kulipanov et al. (1998)

5

CHESS & ERL

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

Progress in ERLs for Light Sources CLASSE

Operations at JLAB, Daresbury, BINP Designs at Cornell

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

CHESS & ERL

New test installations

Double Loop Compact ERL (KEK)

I.V. Bazarov, Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012

CHESS & ERL

• Essentials

- SRF (high Q₀, Q_L for low operation cost; HOM damping for > 100mA; cost-efficient cryomodule design & fabrication)
- Photoinjector (demonstrate high current, longevity, brightness)
- Generic facility strawman (undulators, magnets, power budget, cryoplant)

And beyond

- Multi-turn designs (depends on how cheap/efficient SRF can be made)
- Marry XFEL solutions (simultaneous low rep rate beam operation with high current – e.g. KEK design)

19

Significant photoinjector developments

- First beam from new SRF electron sources (HZB/JLAB for ERLs; Niowave/NPS; more coming up)
- More new guns (DC, NCRF, and SRF) with ~100mA in mind either being commissioned or under construction
- Cornell photoinjector highlights (over the last year):
 - Maximum average current of 50 mA from a photoinjector demonstrated (Feb 2012)
 - Demonstrated feasibility of high current operation (~ kiloCoulomb extracted with no noticeable QE at the laser spot)
 - Original emittance spec achieved: now getting x1.8 the thermal emittance values, close to simulations (Sept 2011)
 - Beam brightness @5GeV same as 100 mA 0.5x0.005nm-rad SR

Boeing/LANL RF gun tribute

The Boeing 433 MHz RF Photocathode Gun

D.H. Dowell/MIT Talk, May 31, 2002

- New current record is 52 mA at Cornell
 - beats Dave Dowell's 32 mA record of 20 years!
- More in my photoinjector overview talk

Main Linac Cavity Development and high Q₀

Specs: Support ERL operation with >100 mA; must minimize cryogenic wall losses (Q~2.10¹⁰ at 1.8 K)

Completed :

- RF design
- Mechanical design
- Cavity fabrication
- Vertical cavity RF test
- Horizontal cavity test in cryomodule
- Meets ERL specs: 16 MV/m, $Q_0 \sim 2.10^{10}$

RF Optimization for >100 mA ERL **Operation (I)**

Cell shape optimization:

- ~20 free parameters
- Full Higher-Order Mode characterization (1000's of eigenmodes)
- Verification of robustness of cavity design

Optimized cavity shape robust up to ±0.25 mm shape imperfections!

RF Optimization for >100 mA ERL Operation (III)

Results of Beam-Break-Up simulations:

Note: includes realistic fabrication errors and HOM damping materials!

beam currents well above 100 mA!

Some of this work is summarized in N. Valles & M. Liepe, PAC'11, TUP064, p. 937

CHESS & ERL

Mechanical Design for efficient Cavity Operation

- Small bandwidth cavity vulnerable cavity microphonics (frequency modulation), especially by helium pressure fluctuations
- Diameter of cavity stiffening rings used as free parameter to reduce df/dp
- ANSYS simulations: large diameter rings and no rings at all have smallest df/dp
- Build two prototype cavities (with and without rings) to explore both options

Prototype Cavity Fabrication

Cornell University CHESS & ERL

Vertical Performance Test of Prototype Cavity

 Cavity surface was prepared for high Q₀ while keeping it as simple as possible: bulk BCP, 650C outgassing, final BCP, 120C bake

The achievement of high Q is relevant not only to Cornell's ERL but also to Project-X at Fermilab, to the Next Generation Light Source, to Electron-Ion colliders, spallation-neutron sources, and accelerator-driven nuclear reactors.

One-Cavity ERL Main Linac Test Cryomodule

Assembled and currently under testing at Cornell:

- First full main linac system test
- Focus on cavity performance and cryogenic performance

29

Preliminary Test Results of First ERL Main Linac Cavity in Test Cryomodule

Cavity exceeds ERL gradient and Qo specifications in its first cryomodule test!

LASSE

30

- Becomes less appealing as injector & SRF performance/efficiency improves
- Moderate number, e.g. two-pass, approaches
 - Several labs pursuing, capital and operational cost savings
 - Full energy CW linac is a nice investment if can afford
- Extend ERL's to x-ray free electron laser techniques
 - Not appealing for GHz rep. rates; instead use simultaneous operation with a lower rep rate beam

- Simultaneous operation with high current at e.g. XFELO specs
- Keep additional (unrecovered) RF load ~1-2kW per SRF cavity

 Initial analysis to meet XFELO specs shows it's doable using non-energy recovered beamline

Summary & Outlook

- Based on demonstrated source performance: if a hard X-ray ERL were to be built today, it would already be the brightest quasi-CW source of x-rays
- There is a long list of technical issues still requiring attention, but also great progress over the last 2 years
- Further light source evolution calls for free-electron laser techniques married to ERLs (or rather its CW linac at a reduced bunch rep rate) to enhance brightness and better control coherence

35

END

36

Advantages of ERL beams for light sources

ERLs have advanced, science enabling capabilities:

- a) Large currents for Linac quality beams
- b) Continuous beams with flexible bunch structure
- c) Small emittances for round beams

[similar transverse properties have recently been proposed for 3km long rings]

d) Openness to future improvements

[today's rings can also be improved, improvements beyond ring performances mentioned under c) may be harder to imagine]

- e) Small energy spread (2.e-4 rather than conventional 1.e-3)
- f) Variable Optics
- g) Short bunches, synchronized and simultaneous with small emittances

Thus : many advantages beyond increased spectral brightness !

The breadth of science and technology enabled is consequently very large and the

ERL will be a resource for a very broad scientific community.

X-ray ERLs are at the beginning of a development sequence, and extensions can be envisioned, e.g. XFEL-O.

	Advantages of ERL beams: Variable electron optics
1)	Beam size vs. divergence can be optimized on each undulator straight section, without limitations by dynamic apertures. APS: one set of beta functions ESRF: two sets of beta functions (hi, low) ERL: all choices are possible, not "one size fits all"
2)	Move position of minimum electron beam waist along straight section by changing quadrupole settings, without moving components, e.g. move apparent x-ray source point to compensate for changes in focal length on

- refractive lenses and zone plates, or move x-ray focus to the sample.
- 3) There may be other New Features (e.g. optimizing flux through a collimator, monochromator because of extra free knobs) that can be developed because x-ray ERLs are at the start of development.

