HOLOGRAPHIC CLASSIFICATION OF TOPOLOGICAL INSULATORS

ANDRE LECLAIR CORNELL UNIVERSITY

(work with Denis Bernard and Eun-ha Kim)

Friday, August 24, 2012

Beauty of Integrability

NATAL, JULY 2012

Friday, August 24, 2012

Outline

- What are Topological Insulators?
- Two important examples in 2 spatial dimensions: IQHE and Quantum Spin Hall Effect.
- Classification in any spatial dimension. The Periodic Table.
- New Topological Insulators in 2 dimensions.
- Role of interactions in 2d: New Luttinger L's.

What are Topological Insulators?

- Band insulators with a gap with special topological properties.
- Bulk wave functions have a topological invariant.
- This leads to gapless states on the boundary that are robust, i.e. protected against scattering with impurities, localization, etc.
- Illustrate with 2 important examples in 2 dimensions: IQHE, QSHE.

The BULK topological invariant

example of topology: you cannot smoothly deform a caju into a donut:

The bulk topological invariant....

Bulk wavefunctions $|u(\mathbf{k})\rangle$ have analogous topological properties (TKNN invariant):

 $\mathbf{A} = \mathbf{i} \langle \mathbf{u}(\mathbf{k}) | \nabla_{\mathbf{k}} | \mathbf{u}(\mathbf{k}) \rangle$

 $N = \frac{1}{2\pi} \int d^2 \mathbf{k} \, \nabla \times \mathbf{A} = \text{integer} = \text{Chern } \#$

= number of chiral edge modes

We have holography: bulk/boundary correspondence.

8

Quantum Spin Hall

- the first new realization of a topological insulator. (Kane-Mele). Top. inv. is Z₂
- Preserves time-reversal symmetry, spin orbit coupling plays the role of magnetic field.
- Physical realization in HgCdTe quantum wells.

Due to T-reversal, there are now both left and right moving edge states, but momentum is locked with spin.

Classification of TI's

- IQHE and QSHE differ in their time-reversal symmetries, and this is the main distinction.
- One can also consider particle-hole symmetry (for superconductors).
- Two approaches, one based on K-theory (Kitaev), the other on the existence of topological invariants (Ryu et. al.), both predict 5 classes of TI in any dimension.
- Our work: holographic approach, i.e. classification of symmetry protected zero modes on the boundary (Bernard,Kim,AL). Not necessarily equivalent.

The 10 symmetry classes

Under time reversal (T), particle-hole (C) and chirality (P), the hamiltonian transforms as:

T:	$T\mathcal{H}^*T^\dagger =$	\mathcal{H}
L.	$I \pi I' -$	π

$$\mathbf{C}: \qquad C\mathcal{H}^T C^{\dagger} = -\mathcal{H}$$

$$\mathbf{P}: \qquad P\mathcal{H}P^{\dagger} = -\mathcal{H}$$

For hermitian H, $\mathcal{H}^T = \mathcal{H}^*$, and we work with the transpose.

AZ-classes	T	C	Р
А	Ø	Ø	Ø
AIII	Ø	Ø	1
AII	-1	Ø	Ø
AI	+1	Ø	Ø
C	Ø	-1	Ø
D	Ø	+1	Ø
BDI	+1	+1	1
DIII	-1	+1	1
CII	-1	-1	1
CI	+1	-1	1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The \pm signs refer to $T^T = \pm T$ and $C^T = \pm C$, whereas \emptyset denotes non-existence of the symmetry.

Notation BDI etc. goes back to Cartan's classification of symmetric spaces.

Principles of Classification

- Assume the boundary theory is first order in derivatives (Dirac). This can give a spectrum
 E² = k² + M² which is gapless if M=0.
- Classify zero modes of M according T,C,P and spatial dimension d.
- A well-posed mathematical problem, solved using generic properties of Clifford algebras.

Dirac hamiltonian:

$$\mathcal{H} = -i\sum_{a=1}^{\overline{d}} \gamma_a \frac{\partial}{\partial x_a} + M \qquad \quad \overline{d} = d-1$$

To obtain Dirac spectrum:

 $\{\gamma_a, \gamma_b\} = 2\delta_{ab}; \qquad \{\gamma_a, M\} = 0, \quad \forall a$

The conditions for $\mathbf{P}, \mathbf{T}, \mathbf{C}$ symmetry are the following $\forall a:$:

$$\mathbf{P} : \{P, \gamma_a\} = 0, \quad \{P, M\} = 0$$
$$\mathbf{T} : T\gamma_a^T = -\gamma_a T, \quad TM^T = MT$$
$$\mathbf{C} : C\gamma_a^T = \gamma_a C, \quad CM^T = -MC$$

I4

Clifford algebra representation on a 2ⁿ dimensional vector space

$$\{\Gamma_a, \Gamma_b\} = 2\delta_{ab}$$

$$\begin{split} \Gamma_1 &= \sigma_y \otimes \sigma_z \otimes \sigma_z \otimes \cdots \otimes \sigma_z \\ \Gamma_2 &= \sigma_x \otimes \sigma_z \otimes \sigma_z \otimes \cdots \otimes \sigma_z \\ \Gamma_3 &= \mathbf{1} \otimes \sigma_y \otimes \sigma_z \otimes \cdots \otimes \sigma_z \\ \Gamma_4 &= \mathbf{1} \otimes \sigma_x \otimes \sigma_z \otimes \cdots \otimes \sigma_z \\ &\vdots \\ \Gamma_{2n-1} &= \mathbf{1} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \sigma_y \\ \Gamma_{2n} &= \mathbf{1} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \sigma_x \\ \Gamma_{2n+1} &= \sigma_z \otimes \sigma_z \otimes \cdots \otimes \sigma_z \otimes \sigma_z \\ \end{split}$$

 σ = Pauli matrices

The hamiltonian:

Dirac hamiltonian:

$$\mathcal{H} = -i\sum_{a=1}^{\overline{d}} \gamma_a \frac{\partial}{\partial x_a} + M \qquad \quad .\,\overline{d} = d -$$

For d odd: Let d = 2n+1.

choose $\gamma_a = \Gamma_a$ for a = 1, 2, ... 2nand $M = \Gamma_{2n+1}$

For d even: Let d = 2n.

$$\gamma_a = \Gamma_a \text{ for } a = 1 \text{ to } 2n - 1,$$

 $M = M^T = \Gamma_{2n}$

Note, for d even there is one unused $\Gamma_{2n+I} = P$ which leads to "left/right" chirality with the projectors: $p_{\pm} = (1 \pm \Gamma_{2n+1})/2$,

16

Implementing T, C,P

- In any dimension $P = \Gamma_{2n+1}$
- T and C are elements of the Clifford algebra.
- In any dimension T, C are either:

$$G = \Gamma_1 \Gamma_3 \Gamma_5 \cdots \Gamma_{2n-1}, \qquad \widetilde{G} = G \Gamma_{2n+1}$$

They satisfy:

$$G^T = (-1)^{n(n+1)/2} G, \qquad \widetilde{G}^T = (-1)^{n(n-1)/2} \widetilde{G}$$

I7

$$\mathbf{T} : \quad T\gamma_a^T = -\gamma_a T,$$

$$\mathbf{C} : \qquad C\gamma_a^T = \gamma_a C,$$

$d \mod 8$	T	T^T/T	C	C^T/C	$ s_t $	s_c
0	\widetilde{G}	+1	G	+1	-1	+1
1	\widetilde{G}	+1	G	+1	+1	+1
2	G	-1	\widetilde{G}	+1	-1	+1
3	G	-1	\widetilde{G}	+1	-1	-1
4	\widetilde{G}	-1	G	-1	$\left -1 \right $	+1
5	\widetilde{G}	-1	G	-1	+1	+1
6	G	+1	\widetilde{G}	-1	$\left -1 \right $	+1
7	G	+1	\widetilde{G}	-1	$\left -1 \right $	-1

To obtain all AZ classes, one needs to tensor in an additional space, for example:

$$T' = i\tau_y \otimes G, \qquad C' = i\tau_y \otimes \widetilde{G}.$$

 τ = another set of Pauli matrices

Classifying zero modes.

 $TM^T = MT$ $CM^T = -MC$

The general form of \mathbf{T}, \mathbf{C} are $T = \tau_t \otimes X_t$ and $C = \tau_c \otimes X_c$, where $X_{t,c}$ are either G, \widetilde{G} $\tau_{t,c} = 1$ or $i\tau_y$.

 $M = V \otimes \Gamma$, where $\Gamma = \Gamma_{2n+1}, \Gamma_{2n}$ for d = 2n + 1, 2n respectively.

I9

constraints on V coming from \mathbf{T}, \mathbf{C} ,

$$\tau_t V^T = s_t V \tau_t, \qquad \tau_c V^T = -s_c V \tau_c$$
$$X_{t,c} \Gamma = s_{t,c} \Gamma X_{t,c}.$$

There are 9 ways for a zero mode to arise:

case	$ au_t$	$ au_c$	s_t	s_c	constraints on V	type
1	1	Ø	-1	Ø	eq. 14	\mathbb{Z}_2
2	Ø	1	Ø	+1	eq. 14	\mathbb{Z}_2
3	1	1	-1	+1	eq. 14	\mathbb{Z}_2
4	1	1	-1	-1	V = 0	\mathbb{Z}
5	1	1	+1	+1	V = 0	\mathbb{Z}
6	$i au_y$	$i au_y$	-1	-1	V = 0	$2\mathbb{Z}$
7	$i au_y$	$i au_y$	+1	+1	V = 0	$2\mathbb{Z}$
8	$i au_y$	1	+1	+1	eq. 15	\mathbb{Z}_2
9	1	$i au_y$	-1	-1	eq. 15	\mathbb{Z}_2

$$V^T = -V \implies \det V = 0 \text{ if } \dim(V) \text{ is odd}$$

(14)

$$V = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \text{ with } a^T = -a \implies \det V = 0 \text{ if } \dim(a) \text{ is } 1 \tag{15}$$

Periodic Table:

		行行其他自己的	433、4月累(銀金) 14			1000000000		17199253
	$d \mod 8$							
AZ class	0	1	2	3	4	5	6	7
A	Z	Ø	\mathbb{Z}	Ø	\mathbb{Z}	Ø	\mathbb{Z}	Ø
AIII	Ø	\mathbb{Z}	Ø	\mathbb{Z}	Ø	\mathbb{Z}	Ø	\mathbb{Z}
AI	\mathbb{Z},\mathbb{Z}_2	Ø	Ø	Ø	$2\mathbb{Z}$	Ø	\mathbb{Z}_2	\mathbb{Z}_2
BDI	\mathbb{Z}_2	\mathbb{Z}	Ø	Ø	Ø	$2\mathbb{Z}$	Ø	\mathbb{Z}_2
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z},\mathbb{Z}_2	Ø	Ø	Ø	$2\mathbb{Z}$	Ø
DIII	Ø	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	Ø	Ø	Ø	$2\mathbb{Z}$
AII	$2\mathbb{Z}$	Ø	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z},\mathbb{Z}_2	Ø	Ø	Ø
CII	Ø	$2\mathbb{Z}$	Ø	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	Ø	Ø
C	Ø	Ø	$2\mathbb{Z}$	Ø	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z},\mathbb{Z}_2	Ø
CI	Ø	Ø	Ø	$2\mathbb{Z}$	Ø	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

Red entries are new. Blue indicates chiral classes. AL and D. Bernard

21

Exceptionality of two dimensions

- Here the structure is even richer since there are 2 inequivalent ways of implementing time reversal symmetry.
- There are 17 inequivalent classes of Dirac fermions rather than just the 10 AZ classes.
- There are 11 topological insulators!

$$\mathcal{H} = \begin{pmatrix} V_+ + V_- & -i\partial_x + A \\ -i\partial_x + A^{\dagger} & V_+ - V_- \end{pmatrix}$$

1d-classes	Т	С	Р	V_{\pm}	A	zero-mode
A	Ø	Ø	Ø	$V_{+}^{\dagger} = V_{+}$		Z
AIII ₍₁₎	Ø	Ø	$1\otimes \sigma_z$	$V_{\pm} = 0$		Z
$\operatorname{AIII}_{(1)}^{\prime}$	Ø	Ø	$1 \otimes i \sigma_y$	$V_{+} = 0$		
AIII ₍₂₎	Ø	Ø	$ au_z\otimes\sigma_z$	$\tau_z V_{\pm} = -V_{\pm} \tau_z$	$\tau_z A = A \tau_z$	
$\operatorname{AIII}_{(2)}'$	Ø	Ø	$ au_z \otimes i \sigma_y$	$\tau_z V_{\pm} = \mp V_{\pm} \tau_z$		
$AII_{(1)}$	$1\otimes i\sigma_y$	Ø	Ø	$V_{\pm} = \pm V_{\pm}^T$	$A^T = -A$	\mathbb{Z}_2
$AII_{(2)}$	$i au_y\otimes\sigma_z$	Ø	Ø	$\tau_y V_{\pm}^T = V_{\pm} \tau_y$	$\tau_y A^* = -A\tau_y$	
$AI_{(1)}$	$i au_y \otimes i\sigma_y$	Ø	Ø	$\tau_y V_{\pm}^T = \pm V_{\pm} \tau_y$	$\tau_y A^T = -A\tau_y$	
$AI_{(2)}$	$1\otimes \sigma_z$	Ø	Ø	$V_{\pm}^T = V_{\pm}$	$A^* = -A$	
С	Ø	$i au_y\otimes {f 1}$	Ø	$\tau_y V_{\pm}^T = -V_{\pm} \tau_y$	$\tau_y A^* = -A\tau_y$	\mathbb{Z}
C'	Ø	$i au_y\otimes\sigma_x$	Ø	$\tau_y V_{\pm}^T = \mp V_{\pm} \tau_y$	$\tau_y A^T = -A\tau_y$	
D	Ø	${f 1}\otimes{f 1}$	Ø	$V_{\pm} = -V_{\pm}^T$	$A^* = -A$	\mathbb{Z}, \mathbb{Z}_2
D'	Ø	$1\otimes \sigma_x$	Ø	$V_{\pm} = \mp V_{\pm}^T$	$A^T = -A$	
$BDI_{(1)}$	$i au_y \otimes i\sigma_y$	${f 1}\otimes{f 1}$	$i au_y \otimes i\sigma_y$	$V_{\pm} = -V_{\pm}^T = \mp \tau_y V_{\pm} \tau_y$	$A = -A^* = -\tau_y A^T \tau_y$	
$BDI'_{(1)}$	$i au_y \otimes i\sigma_y$	$ au_x\otimes\sigma_x$	$ au_z\otimes\sigma_z$	$V_{\pm} = \pm \tau_y V_{\pm}^T \tau_y = \mp \tau_x V_{\pm}^T \tau_x$	$\tau_{x,y}A^T = -A\tau_{x,y}$	
$BDI_{(2)}$	$1\otimes \sigma_z$	$1\otimes1$	$1\otimes\sigma_z$	$V_{\pm} = 0$	$A^* = -A$	\mathbb{Z}
DIII ₍₁₎	${f 1}\otimes i\sigma_y$	$1\otimes1$	$1\otimes i\sigma_y$	$V_+ = 0, V^T = -V$	$A = -A^* = -A^T$	\mathbb{Z}_2
$DIII_{(2)}$	$i au_y\otimes\sigma_z$	$1\otimes1$	$i au_y\otimes\sigma_z$	$V_{\pm} = -V_{\pm}^T = -\tau_y V_{\pm} \tau_y$	$A = -A^* = -\tau_y A^T \tau_y$	\mathbb{Z}_2
$\text{DIII}'_{(2)}$	$i au_y\otimes\sigma_z$	$ au_x\otimes\sigma_x$	$ au_z \otimes i \sigma_y$	$V_{\pm} = \tau_y V_{\pm}^T \tau_y = \mp \tau_x V_{\pm}^T \tau_x$	$A = -\tau_y A^* \tau^y = -\tau_x A^T \tau_x$	
$\operatorname{CII}_{(1)}$	${f 1}\otimes i\sigma_y$	$i au_y\otimes {f 1}$	$i au_y \otimes i\sigma_y$	$V_{\pm} = \pm V_{\pm}^T = \mp \tau_y V_{\pm} \tau_y$	$A = -A^T = -\tau_y A^* \tau_y$	\mathbb{Z}_2
$\operatorname{CII}_{(1)}^{\prime}$	$ au_x \otimes i \sigma_y$	$i au_y\otimes\sigma_x$	$ au_z\otimes\sigma_z$	$V_{\pm} = \pm \tau_x V_{\pm}^T \tau_x = \mp \tau_y V_{\pm}^T \tau_y$	$\tau_{x,y}A^T = -A\tau_{x,y}$	
CII ₍₂₎	$i au_y\otimes\sigma_z$	$i au_y\otimes {f 1}$	$1\otimes\sigma_z$	$V_{\pm} = 0$	$A = -\tau_y A^* \tau_y$	Z
CI ₍₁₎	$i au_y \otimes i\sigma_y$	$i au_y\otimes {f 1}$	$1\otimes i\sigma_y$	$V_{+} = 0, \tau_y V_{-}^T = -V_{-} \tau_y$	$A = -\tau_y A^T \tau_y = -\tau_y A^* \tau_y$	
$CI_{(2)}$	$1\otimes \sigma_z$	$i au_y\otimes {f 1}$	$i au_y\otimes\sigma_z$	$V_{\pm} = V_{\pm}^T = -\tau_y V_{\pm} \tau_y$	$A = -A^* = -\tau_y A^* \tau_y$	
$\operatorname{CI}_{(2)}'$	$ au_x\otimes\sigma_z$	$i au_y\otimes\sigma_x$	$ au_z \otimes i \sigma_y$	$V_{\pm} = \tau_x V_{\pm}^T \tau_x = \mp \tau_y V_{\pm}^T \tau_y$	$A = -\tau_x A^* \tau_x = -\tau_y A^T \tau_y$	

Table of TI's in d=2. (red are new)

D. Bernard, E-A Kim and AL.

$\overline{d} = 1$ classes	= 1 classes zero modes topological invariant		examples
A	Z	Z	QH edge states
C	Z	Z	spin QH edge states in $d + id$ -wave SC ^{17,18}
D	Z	Z	thermal QH edge states in spinless chiral p -wave SC^{17}

TABLE III. $\overline{d} = 1$ chiral Dirac hamiltonian classes.

$\overline{d} = 1$ classes	Т	С	Р	zero modes	top. inv.	locking	examples
$\mathbf{AIII}_{(1)}$	Ø	Ø	σ_z	Z			
$AII_{(1)}$	$i\sigma_y$	Ø	Ø	\mathbb{Z}_2	\mathbb{Z}_2	Y	HgTe/(Hg,Cd)Te
D	Ø	1	Ø	\mathbb{Z}_2			
$\mathbf{BDI}_{(2)}$	σ_z	1	σ_z	\mathbb{Z}			"strained graphene"
$\text{DIII}_{(1)}$	$i\sigma_y$	1	$i\sigma_y$	\mathbb{Z}_2	\mathbb{Z}_2	Y	$(p+ip) \times (p-ip)$ -wave SC
$\mathbf{DIII}_{(2)}$	$i au_y\otimes\sigma_z$	1	$i au_y\otimes\sigma_z$	\mathbb{Z}_2	\mathbb{Z}_2	Ν	particle-hole symmetric KM model
$\mathbf{CII}_{(1)}$	${f 1}\otimes i\sigma_y$	$i au_y\otimes {f 1}$	$i au_y \otimes i\sigma_y$	\mathbb{Z}_2		Y	doubled KM
$\mathbf{CII}_{(2)}$	$i au_y\otimes\sigma_z$	$i au_y \otimes 1$	$1\otimes \sigma_z$	\mathbb{Z}		Ν	

TABLE IV. $\overline{d} = 1$ non-chiral Dirac hamiltonian classes with symmetry protected zero modes. The spinmomentum locking column is left blank when spins cannot be assigned because the time-reversal operator do not involve either $i\sigma_y$ or $i\tau_y$. New classes are shown in boldface (red online). The example in quotation marks is a *suggested* possible realization.

Interactions in 2d

- For the IQHE, bulk interactions lead to FQHE. Boundary Dirac theory deformed into a Luttinger liquid.
- Quartic interactions on the boundary are marginal.
- Can show: ALL quartic interactions on the boundary consistent with the T,C,P symmetries are EXACTLY marginal, like the Luttinger L.
- This strongly suggests fractional Topological Insulators. Likely to be integrable on boundary.

Summary

- this holographic approach reproduces other approaches based on topology or K-theory but suggests new topological insulators.
- On additional TI in every even dimension.
- 6 additional TI in 2 dimensions!
- physical realizations?