HOLOGRAPHIC

CLASSIFICATION
 OF TOPOLOGICAL INSULATORS

ANDRE LECLAIR
CORNELL UNIVERSITY

(work with Denis Bernard and Eun-ha Kim)

Beauty of Integrability

Outline

-What are Topological Insulators?

- Two important examples in 2 spatial dimensions: IQHE and Quantum Spin Hall Effect.
- Classification in any spatial dimension. The Periodic Table.
- New Topological Insulators in 2 dimensions.
- Role of interactions in 2d: New Luttinger L's.

What are Topological Insulators?

- Band insulators with a gap with special topological properties.
- Bulk wave functions have a topological invariant.
- This leads to gapless states on the boundary that are robust, i.e. protected against scattering with impurities, localization, etc.
- Illustrate with 2 important examples in 2 dimensions: IQHE, QSHE.

Integer Quantum Hall Effect

2-dimensional electron gas in a perpendicular magnetic field:

Hall conductivity is quantized: $\sigma_{\mathrm{xy}}=\mathrm{Ne}^{2} / \mathrm{h}$ N is an integer to I part in Io9!

Why? N right-moving edge modes.
Insulator

Generalized viewpoint:

The BULK topological invariant

example of topology: you cannot smoothly deform a caju into a donut:
smooth deformations:

> number of holes = Euler invariant
> =integral over surface of some function.

The bulk topological invariant....

Bulk wavefunctions $|u(\mathbf{k})\rangle$ have analogous topological properties (TKNN invariant):

$$
\begin{aligned}
\mathbf{A} & =\mathbf{i}\langle\mathbf{u}(\mathbf{k})| \nabla_{\mathbf{k}}|\mathbf{u}(\mathbf{k})\rangle \\
N & =\frac{1}{2 \pi} \int d^{2} \mathbf{k} \nabla \times \mathbf{A}=\text { integer }=\text { Chern } \# \\
& =\text { number of chiral edge modes }
\end{aligned}
$$

We have holography: bulk/boundary correspondence.

Quantum Spin Hall

- the first new realization of a topological insulator. (Kane-Mele). Top. inv. is Z_{2}
- Preserves time-reversal symmetry, spin orbit coupling plays the role of magnetic field.
- Physical realization in HgCdTe quantum wells.

Due to T-reversal, there are now both left and right moving edge
states, but momentum is locked with spin.

Classification of TI's

- IQHE and QSHE differ in their time-reversal symmetries, and this is the main distinction.
- One can also consider particle-hole symmetry (for superconductors).
- Two approaches, one based on K-theory (Kitaev), the other on the existence of topological invariants (Ryu et. al.), both predict 5 classes of TI in any dimension.
- Our work: holographic approach, i.e. classification of symmetry protected zero modes on the boundary (Bernard,Kim,AL). Not necessarily equivalent.

The io symmetry classes

Under time reversal (T), particle-hole (C) and chirality (P), the hamiltonian transforms as:

$$
\begin{array}{ll}
\mathbf{T}: & \\
& T \mathcal{H}^{*} T^{\dagger}=\mathcal{H} \\
\mathbf{C} & \\
\mathbf{P}: & C \mathcal{H}^{T} C^{\dagger}=-\mathcal{H} \\
& P \mathcal{H} P^{\dagger}=-\mathcal{H}
\end{array}
$$

For hermitian $\mathrm{H}, \mathcal{H}^{T}=\mathcal{H}^{*}$, and we work with the transpose.

AZ-classes	T	C	P
A	\emptyset	\emptyset	\emptyset
AIII	\emptyset	\emptyset	1
AII	-1	\emptyset	\emptyset
AI	+1	\emptyset	\emptyset
C	\emptyset	-1	\emptyset
D	\emptyset	+1	\emptyset
BDI	+1	+1	1
DIII	-1	+1	1
CII	-1	-1	1
CI	+1	-1	1

TABLE I: The 10 Altland-Zirnbauer (AZ) hamiltonian classes. The \pm signs refer to $T^{T}=$ $\pm T$ and $C^{T}= \pm C$, whereas \emptyset denotes non-existence of the symmetry.

Notation BDI etc. goes back to Cartan's classification of symmetric spaces.

Principles of Classification

- Assume the boundary theory is first order in derivatives (Dirac). This can give a spectrum $E^{2}=k^{2}+M^{2}$ which is gapless if $M=0$.
- Classify zero modes of M according T,C,P and spatial dimension d.
- A well-posed mathematical problem, solved using generic properties of Clifford algebras.

Dirac hamiltonian:

$$
\mathcal{H}=-i \sum_{a=1}^{\bar{d}} \gamma_{a} \frac{\partial}{\partial x_{a}}+M \quad \bar{d}=d-1
$$

To obtain Dirac spectrum:

$$
\left\{\gamma_{a}, \gamma_{b}\right\}=2 \delta_{a b} ; \quad\left\{\gamma_{a}, M\right\}=0, \quad \forall a
$$

The conditions for $\mathbf{P}, \mathbf{T}, \mathbf{C}$ symmetry are the following $\forall a$:

$$
\begin{array}{lll}
\mathbf{P}: & \left\{P, \gamma_{a}\right\}=0, & \{P, M\}=0 \\
\mathbf{T}: & T \gamma_{a}^{T}=-\gamma_{a} T, & T M^{T}=M T \\
\mathbf{C}: & C \gamma_{a}^{T}=\gamma_{a} C, & C M^{T}=-M C
\end{array}
$$

Clifford algebra representation on a 2^{n} dimensional vector space

$$
\begin{gathered}
\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 \delta_{a b} \\
\Gamma_{1}=\sigma_{y} \otimes \sigma_{z} \otimes \sigma_{z} \otimes \cdots \otimes \sigma_{z} \\
\Gamma_{2}=\sigma_{x} \otimes \sigma_{z} \otimes \sigma_{z} \otimes \cdots \otimes \sigma_{z} \\
\Gamma_{3}=\mathbf{1} \otimes \sigma_{y} \otimes \sigma_{z} \otimes \cdots \otimes \sigma_{z} \\
\Gamma_{4}=\mathbf{1} \otimes \sigma_{x} \otimes \sigma_{z} \otimes \cdots \otimes \sigma_{z} \\
: \\
\Gamma_{2 n-1}=\mathbf{1} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \sigma_{y} \\
\Gamma_{2 n}=\mathbf{1} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \sigma_{x} \\
\Gamma_{2 n+1}
\end{gathered}=\sigma_{z} \otimes \sigma_{z} \otimes \cdots \otimes \sigma_{z} \otimes \sigma_{z} .
$$

$\sigma=$ Pauli matrices

The hamiltonian:

Dirac hamiltonian: $\mathcal{H}=-i \sum_{a=1}^{\bar{d}} \gamma_{a} \frac{\partial}{\partial x_{a}}+M \quad \bar{d}=d-1$

For d odd: \quad Let $d=2 n+1$.
choose $\gamma_{a}=\Gamma_{a}$ for $a=1,2, \ldots 2 n$

$$
\text { and } M=\Gamma_{2 n+1}
$$

For d even: \quad Let $d=2 n$.

$$
\begin{gathered}
\gamma_{a}=\Gamma_{a} \text { for } a=1 \text { to } 2 n-1, \\
M=M^{T}=\Gamma_{2 n}
\end{gathered}
$$

Note, for d even there is one unused $\Gamma_{2 n+1}=\mathrm{P}$ which leads to "left/right" chirality with the projectors: $\quad p_{ \pm}=\left(1 \pm \Gamma_{2 n+1}\right) / 2$,

Implementing T, C,P

- In any dimension $P=\Gamma_{2 n+1}$
- T and C are elements of the Clifford algebra.
- In any dimension T, C are either:

$$
G=\Gamma_{1} \Gamma_{3} \Gamma_{5} \cdots \Gamma_{2 n-1}, \quad \widetilde{G}=G \Gamma_{2 n+1}
$$

They satisfy:

$$
G^{T}=(-1)^{n(n+1) / 2} G, \quad \widetilde{G}^{T}=(-1)^{n(n-1) / 2} \widetilde{G}
$$

$$
\begin{aligned}
& \mathbf{T}: \quad T \gamma_{a}^{T}=-\gamma_{a} T \\
& \mathbf{C}: \quad C \gamma_{a}^{T}=\gamma_{a} C
\end{aligned}
$$

$d \bmod 8$	T	T^{T} / T	C	C^{T} / C	s_{t}	s_{c}
0	\widetilde{G}	+1	G	+1	-1	+1
1	\widetilde{G}	+1	G	+1	+1	+1
2	G	-1	\widetilde{G}	+1	-1	+1
3	G	-1	\widetilde{G}	+1	-1	-1
4	\widetilde{G}	-1	G	-1	-1	+1
5	\widetilde{G}	-1	G	-1	+1	+1
6	G	+1	\widetilde{G}	-1	-1	+1
7	G	+1	\widetilde{G}	-1	-1	-1

To obtain all AZ classes, one needs to tensor in an additional space, for example:

$$
T^{\prime}=i \tau_{y} \otimes G: \quad C^{\prime}=i \tau_{y} \otimes \widetilde{G}
$$

$\tau=$ another set of Pauli matrices

Classifying zero modes.

- i.e. we can classify zero eigenvalues of the mass M based on the constraints that come from:

$$
\begin{aligned}
& \{P, M\}=0 \\
& T M^{T}=M T \\
& C M^{T}=-M C
\end{aligned}
$$

The algebra:

$$
\text { The general form of } \mathbf{T}, \mathbf{C} \text { are } T=\tau_{t} \otimes X_{t} \text { and }
$$

$$
C=\tau_{c} \otimes X_{c}, \text { where } X_{t, c} \text { are either } G, \widetilde{G}
$$

$$
\tau_{t, c}=1 \text { or } i \tau_{y}
$$

$$
M=V \otimes \Gamma, \text { where } \Gamma=\Gamma_{2 n+1}, \Gamma_{2 n} \text { for } d=2 n+1,2 n \text { respectively. }
$$

constraints on V coming from \mathbf{T}, \mathbf{C},

$$
\tau_{t} V^{T}=s_{t} V \tau_{t}, \quad \tau_{c} V^{T}=-s_{c} V \tau_{c}
$$

$$
X_{t, c} \Gamma=s_{t, c} \Gamma X_{t, c}
$$

There are 9 ways for a zero mode to arise:

case	τ_{t}	τ_{c}	s_{t}	s_{c}	constraints on V	type
1	1	\emptyset	-1	\emptyset	eq. 14	\mathbb{Z}_{2}
2	\emptyset	1	\emptyset	+1	eq. 14	\mathbb{Z}_{2}
3	1	1	-1	+1	eq. 14	\mathbb{Z}_{2}
4	1	1	-1	-1	$V=0$	\mathbb{Z}
5	1	1	+1	+1	$V=0$	\mathbb{Z}
6	$i \tau_{y}$	$i \tau_{y}$	-1	-1	$V=0$	$2 \mathbb{Z}$
7	$i \tau_{y}$	$i \tau_{y}$	+1	+1	$V=0$	$2 \mathbb{Z}$
8	$i \tau_{y}$	1	+1	+1	eq. 15	\mathbb{Z}_{2}
9	1	$i \tau_{y}$	-1	-1	eq. 15	\mathbb{Z}_{2}

$$
\begin{align*}
& V^{T}=-V \Longrightarrow \operatorname{det} V=0 \text { if } \operatorname{dim}(V) \text { is odd } \tag{14}\\
& V=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right) \text { with } a^{T}=-a \Longrightarrow \operatorname{det} V=0 \text { if } \operatorname{dim}(a) \text { is } 1 \tag{15}
\end{align*}
$$

Periodic Table:

	$d \bmod 8$							
AZ class	0	1	2	3	4	5	6	7
A	\mathbb{Z}	\emptyset	\mathbb{Z}	\emptyset	\mathbb{Z}	\emptyset	\mathbb{Z}	\emptyset
AIII	\emptyset	\mathbb{Z}	\emptyset	\mathbb{Z}	\emptyset	\mathbb{Z}	\emptyset	\mathbb{Z}
AI	$\mathbb{Z}, \mathbb{Z}_{2}$	\emptyset	\emptyset	\emptyset	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}
BDI	\mathbb{Z}_{2}	\mathbb{Z}	\emptyset	\emptyset	\emptyset	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}, \mathbb{Z}_{2}$	\emptyset	\emptyset	\emptyset	$2 \mathbb{Z}$	\emptyset
DIII	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	\emptyset	\emptyset	\emptyset	$2 \mathbb{Z}$
AII	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}, \mathbb{Z}_{2}$	\emptyset	\emptyset	\emptyset
CII	\emptyset	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	\emptyset	\emptyset
C	\emptyset	\emptyset	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}, \mathbb{Z}_{2}$	\emptyset
CI	\emptyset	\emptyset	\emptyset	$2 \mathbb{Z}$	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}

Red entries are new. Blue indicates chiral classes. AL and D. Bernard

Exceptionality of two dimensions

- Here the structure is even richer since there are 2 inequivalent ways of implementing time reversal symmetry.
- There are 17 inequivalent classes of Dirac fermions rather than just the 10 AZ classes.
- There are 11 topological insulators!

$$
\mathcal{H}=\left(\begin{array}{cc}
V_{+}+V_{-} & -i \partial_{x}+A \\
-i \partial_{x}+A^{\dagger} & V_{+}-V_{-}
\end{array}\right)
$$

1d-classes	T	C	P	$V_{ \pm}$	A	zero-mode
A	\emptyset	\emptyset	\emptyset	$V_{ \pm}^{\dagger}=V_{ \pm}$		\mathbb{Z}
$\begin{aligned} & \hline \mathrm{AIII}_{(1)} \\ & \mathrm{AIIII}_{(1)}^{\prime} \end{aligned}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{aligned} & \mathbf{1} \otimes \sigma_{z} \\ & \mathbf{1} \otimes i \sigma_{y} \end{aligned}$	$\begin{aligned} V_{ \pm} & =0 \\ V_{+} & =0 \end{aligned}$		\mathbb{Z}
$\begin{aligned} & \mathrm{AIII}_{(2)} \\ & \mathrm{AIII}_{(2)}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \emptyset \\ & \emptyset \\ & \hline \end{aligned}$	\emptyset	$\begin{gathered} \tau_{z} \otimes \sigma_{z} \\ \tau_{z} \otimes i \sigma_{y} \end{gathered}$	$\begin{aligned} & \tau_{z} V_{ \pm}=-V_{ \pm} \tau_{z} \\ & \tau_{z} V_{ \pm}=\mp V_{ \pm} \tau_{z} \end{aligned}$	$\tau_{z} A=A \tau_{z}$	
$\mathrm{AII}_{(1)}$	$1 \otimes i \sigma_{y}$	\emptyset	\emptyset	$V_{ \pm}= \pm V_{ \pm}^{T}$	$A^{T}=-A$	\mathbb{Z}_{2}
$\mathrm{AII}_{(2)}$	$i \tau_{y} \otimes \sigma_{z}$	\emptyset	\emptyset	$\tau_{y} V_{ \pm}^{T}=V_{ \pm} \tau_{y}$	$\tau_{y} A^{*}=-A \tau_{y}$	
$\mathrm{AI}_{(1)}$	$i \tau_{y} \otimes i \sigma_{y}$	\emptyset	\emptyset	$\tau_{y} V_{ \pm}^{T}= \pm V_{ \pm} \tau_{y}$	$\tau_{y} A^{T}=-A \tau_{y}$	
$\mathrm{AI}_{(2)}$	$1 \otimes \sigma_{z}$	\emptyset	0	$V_{ \pm}^{T}=V_{ \pm}$	$A^{*}=-A$	
$\begin{gathered} \hline \mathrm{C} \\ \mathrm{C}^{\prime} \end{gathered}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{aligned} & \hline i \tau_{y} \otimes \mathbf{1} \\ & i \tau_{y} \otimes \sigma_{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{aligned} & \tau_{y} V_{ \pm}^{T}=-V_{ \pm} \tau_{y} \\ & \tau_{y} V_{ \pm}^{T}=\mp V_{ \pm} \tau_{y} \end{aligned}$	$\begin{aligned} \tau_{y} A^{*} & =-A \tau_{y} \\ \tau_{y} A^{T} & =-A \tau_{y} \end{aligned}$	\mathbb{Z}
$\begin{gathered} \mathrm{D} \\ \mathrm{D}^{\prime} \end{gathered}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{gathered} \mathbf{1} \otimes \mathbf{1} \\ \mathbf{1} \otimes \sigma_{x} \end{gathered}$	$\begin{aligned} & \emptyset \\ & \emptyset \end{aligned}$	$\begin{aligned} & V_{ \pm}=-V_{ \pm}^{T} \\ & V_{ \pm}=\mp V_{ \pm}^{T} \end{aligned}$	$\begin{aligned} & A^{*}=-A \\ & A^{T}=-A \end{aligned}$	$\mathbb{Z}, \mathbb{Z}_{2}$
$\begin{aligned} & \mathrm{BDI}_{(1)} \\ & \mathrm{BDI}_{(1)}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & i \tau_{y} \otimes i \sigma_{y} \\ & i \tau_{y} \otimes i \sigma_{y} \end{aligned}$	$\begin{gathered} \mathbf{1} \otimes \mathbf{1} \\ \tau_{x} \otimes \sigma_{x} \end{gathered}$	$\begin{aligned} i \tau_{y} & \otimes i \sigma_{y} \\ \tau_{z} & \otimes \sigma_{z} \end{aligned}$	$\begin{gathered} V_{ \pm}=-V_{ \pm}^{T}=\mp \tau_{y} V_{ \pm} \tau_{y} \\ V_{ \pm}= \pm \tau_{y} V_{ \pm}^{T} \tau_{y}=\mp \tau_{x} V_{ \pm}^{T} \tau_{x} \end{gathered}$	$\begin{aligned} A=-A^{*} & =-\tau_{y} A^{T} \tau_{y} \\ \tau_{x, y} A^{T} & =-A \tau_{x, y} \end{aligned}$	
$\mathrm{BDI}_{(2)}$	$1 \otimes \sigma_{z}$	$1 \otimes 1$	$1 \otimes \sigma_{z}$	$V_{ \pm}=0$	$A^{*}=-A$	\mathbb{Z}
$\mathrm{DIII}_{(1)}$	$1 \otimes i \sigma_{y}$	$1 \otimes 1$	$1 \otimes i \sigma_{y}$	$V_{+}=0, V_{-}^{T}=-V_{-}$	$A=-A^{*}=-A^{T}$	\mathbb{Z}_{2}
$\begin{aligned} & \mathrm{DIII}_{(2)} \\ & \mathrm{DIII}_{(2)}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & i \tau_{y} \otimes \sigma_{z} \\ & i \tau_{y} \otimes \sigma_{z} \end{aligned}$	$\begin{gathered} \mathbf{1} \otimes \mathbf{1} \\ \tau_{x} \otimes \sigma_{x} \end{gathered}$	$\begin{aligned} & i \tau_{y} \otimes \sigma_{z} \\ & \tau_{z} \otimes i \sigma_{y} \end{aligned}$	$\begin{gathered} V_{ \pm}=-V_{ \pm}^{T}=-\tau_{y} V_{ \pm} \tau_{y} \\ V_{ \pm}=\tau_{y} V_{ \pm}^{T} \tau_{y}=\mp \tau_{x} V_{ \pm}^{T} \tau_{x} \end{gathered}$	$\begin{gathered} A=-A^{*}=-\tau_{y} A^{T} \tau_{y} \\ A=-\tau_{y} A^{*} \tau^{y}=-\tau_{x} A^{T} \tau_{x} \end{gathered}$	\mathbb{Z}_{2}
$\begin{aligned} & \mathrm{CII}_{(1)} \\ & \mathrm{CHI}_{(1)}^{\prime} \end{aligned}$	$\begin{gathered} \mathbf{1} \otimes i \sigma_{y} \\ \tau_{x} \otimes i \sigma_{y} \\ \hline \end{gathered}$	$\begin{aligned} & \hline i \tau_{y} \otimes \mathbf{1} \\ & i \tau_{y} \otimes \sigma_{x} \\ & \hline \end{aligned}$	$\begin{gathered} i \tau_{y} \otimes i \sigma_{y} \\ \tau_{z} \otimes \sigma_{z} \end{gathered}$	$\begin{gathered} V_{ \pm}= \pm V_{ \pm}^{T}=\mp \tau_{y} V_{ \pm} \tau_{y} \\ V_{ \pm}= \pm \tau_{x} V_{ \pm}^{T} \tau_{x}=\mp \tau_{y} V_{ \pm}^{T} \tau_{y} \end{gathered}$	$\begin{gathered} A=-A^{T}=-\tau_{y} A^{*} \tau_{y} \\ \tau_{x, y} A^{T}=-A \tau_{x, y} \end{gathered}$	\mathbb{Z}_{2}
$\mathrm{CII}_{(2)}$	$i \tau_{y} \otimes \sigma_{z}$	$i \tau_{y} \otimes 1$	$1 \otimes \sigma_{z}$	$V_{ \pm}=0$	$A=-\tau_{y} A^{*} \tau_{y}$	\mathbb{Z}
$\mathrm{CI}_{(1)}$	$i \tau_{y} \otimes i \sigma_{y}$	$i \tau_{y} \otimes \mathbf{1}$	$1 \otimes i \sigma_{y}$	$V_{+}=0, \tau_{y} V_{-}^{T}=-V_{-} \tau_{y}$	$A=-\tau_{y} A^{T} \tau_{y}=-\tau_{y} A^{*} \tau_{y}$	
$\begin{aligned} & \mathrm{CI}_{(2)} \\ & \mathrm{CI}_{(2)}^{\prime} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{1} \otimes \sigma_{z} \\ \tau_{x} \otimes \sigma_{z} \end{array}$	$\begin{aligned} & i \tau_{y} \otimes \mathbf{1} \\ & i \tau_{y} \otimes \sigma_{x} \end{aligned}$	$\begin{aligned} & i \tau_{y} \otimes \sigma_{z} \\ & \tau_{z} \otimes i \sigma_{y} \end{aligned}$	$\begin{gathered} V_{ \pm}=V_{ \pm}^{T}=-\tau_{y} V_{ \pm} \tau_{y} \\ V_{ \pm}=\tau_{x} V_{ \pm}^{T} \tau_{x}=\mp \tau_{y} V_{ \pm}^{T} \tau_{y} \end{gathered}$	$\begin{gathered} A=-A^{*}=-\tau_{y} A^{*} \tau_{y} \\ A=-\tau_{x} A^{*} \tau_{x}=-\tau_{y} A^{T} \tau_{y} \end{gathered}$	

Table of TI's in d=2. (red are new)

D. Bernard, E-A Kim and AL.

$\bar{d}=1$ classes	zero modes	topological invariant	examples
A	\mathbb{Z}	\mathbb{Z}	QH edge states
C	\mathbb{Z}	\mathbb{Z}	spin QH edge states in $d+i d$-wave $\mathrm{SC}^{17,18}$
D	\mathbb{Z}	\mathbb{Z}	thermal QH edge states in spinless chiral p-wave SC^{17}

TABLE III. $\bar{d}=1$ chiral Dirac hamiltonian classes.

$\bar{d}=1$ classes	\mathbf{T}	\mathbf{C}	\mathbf{P}	zero modes	top. inv.	locking	examples
$\mathrm{AIII}_{(1)}$	\emptyset	\emptyset	σ_{z}	\mathbb{Z}			
$\mathrm{AII}_{(1)}$	$i \sigma_{y}$	\emptyset	\emptyset	\mathbb{Z}_{2}	\mathbb{Z}_{2}	Y	$\mathrm{HgTe} /(\mathrm{Hg}, \mathrm{Cd}) \mathrm{Te}$
\mathbf{D}	\emptyset	$\mathbf{1}$	\emptyset	\mathbb{Z}_{2}			
$\mathrm{BDI}_{(2)}$	σ_{z}	$\mathbf{1}$	σ_{z}	\mathbb{Z}			"strained graphene"
$\mathrm{DIII}_{(1)}$	$i \sigma_{y}$	$\mathbf{1}$	$i \sigma_{y}$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	Y	$(p+i p) \times(p-i p)$-wave SC
$\mathrm{DIII}_{(2)}$	$i \tau_{y} \otimes \sigma_{z}$	$\mathbf{1}$	$i \tau_{y} \otimes \sigma_{z}$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	N	particle-hole symmetric KM model
$\mathbf{C I I}_{(1)}$	$\mathbf{1} \otimes i \sigma_{y}$	$i \tau_{y} \otimes \mathbf{1}$	$i \tau_{y} \otimes i \sigma_{y}$	\mathbb{Z}_{2}		Y	
$\mathbf{C I I}_{(2)}$	$i \tau_{y} \otimes \sigma_{z}$	$i \tau_{y} \otimes \mathbf{1}$	$\mathbf{1} \otimes \sigma_{z}$	\mathbb{Z}		N	doubled KM

TABLE IV. $\bar{d}=1$ non-chiral Dirac hamiltonian classes with symmetry protected zero modes. The spinmomentum locking column is left blank when spins cannot be assigned because the time-reversal operator do not involve either $i \sigma_{y}$ or $i \tau_{y}$. New classes are shown in boldface (red online). The example in quotation marks is a suggested possible realization.

Interactions in 2 d

- For the IQHE, bulk interactions lead to FQHE. Boundary Dirac theory deformed into a Luttinger liquid.
- Quartic interactions on the boundary are marginal.
- Can show: ALL quartic interactions on the boundary consistent with the T,C,P symmetries are EXACTLY marginal, like the Luttinger L.
- This strongly suggests fractional Topological Insulators. Likely to be integrable on boundary.

Summary

- this holographic approach reproduces other approaches based on topology or K-theory but suggests new topological insulators.
- On additional TI in every even dimension.
- 6 additional TI in 2 dimensions!
- physical realizations?

