TOWARDS A PROOF OF THE RIEMANN HYPOTHESIS

ANDRÉ LECLAIR
CORNELL UNIVERSITY

Cornell Physics Dept. Colloquium February 29, 2016

Based on:

AL Int. J. Mod. Phys. (2008)
AL Int. J. Mod. Phys. (2013)
G. França and AL, Commun. Number Theory and Phys. 2015
G. França and AL, arXiv:I509.03643 (2015) [math.NT]

AL arXiv:I6or.oo914 (2016) [math.NT]

Introductory material reviewed in my Riemann Center lectures: arxiv:1407.4358

What is the RH?

Riemann zeta function was originally defined by the series:

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}=1+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\ldots, \quad \Re(z)>1
$$

It can be analytically continued to the whole complex z plane.

It has an infinite number of trivial zeros:

$$
\zeta(-2 n)=0
$$

It has a simple pole at $z=1$.

Riemann Hypothesis: All non-trivial zeros of Zeta have real part $\mathrm{m} / 2$. That is they are of the form:

1859

$$
\zeta(\rho)=0, \quad \rho=\frac{1}{2}+i y
$$

complex z-plane:

- = zeros

The first few:
14.1347, 21.022, 25.0109, 30.4249, 32.9351, 37.5862, 40.9187, 43.3271, 48.0052, 49.7738
"One would of course like to have a rigorous proof of this, but I have put aside the search for a proof after some fleeting vain attempts because it is not necessary for the immediate objective of my investigation."

Remarks:

- This is a problem in analytic number theory.
- Importance of the RH : deep implications for distribution of prime numbers. Encryption etc.
- 8th of Hilbert's 23 problems (i9oo). "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann bypothesis been proven?"
- Known numerically that the first IO^{13} zeros are on the line.
- No prior well-posed strategy towards a proof.
- \$ involved: one of 7 Clay Millennium prizes.

Remarks on our approach:

- Main idea: RH follows from the multiplicative independence of the primes. Analogy with statistical mechanics of a large number of particles. There are many more primes than Avogadro's number: $N_{A}=10^{23}$
- The approach is universal, i.e. applies to at least two infinite classes of "zeta" functions, Dirichlet L-functions and those based on cusp (modular) forms such as Ramanujan tau L-function.
- There are no logical gaps, but at least a few results need more rigor to be up to standards of modern pure math. Will indicate where with [*delicate].
- It's a "constructive" approach, i.e. leads to new formulas, etc.
- For instance, I calculated the 10^{100}-th zero:

$$
\begin{aligned}
t_{n}= & 280690383842894069903195445838256400084548030162846 \\
& 045192360059224930922349073043060335653109252473.244 \ldots .
\end{aligned}
$$

Outline

- A bit of physics, zeta in Casimir effect, blackbody radiation, BEC.
- Generalized RH: Dirichlet series.
- Our main theorem: Random Walks and central limit theorems.
- Transcendental equations for individual zeros and a second theorem.
- Computing very high zeros from the primes.

The Casimir effect and Zeta

energy density: $\quad \rho_{\mathrm{vac}}^{\mathrm{cas}}=-\pi^{2} / 720 \ell^{4}$.
This effect has been measured.
For now note: $720=6 \times 120$

Cylindrical version of Casimir effect

Just change boundary conditions: join plates at edges to have periodic b.c.

$$
\text { Relation to Casimir: } \quad \rho_{\mathrm{vac}}^{\mathrm{cas}}(\ell)=2 \rho_{\mathrm{vac}}^{\mathrm{cyl}}(\beta=2 \ell)
$$

$$
\rho_{\text {vac }}^{\text {cyl }}=\frac{1}{2 \beta} \sum_{n \in \mathbb{Z}} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \sqrt{\mathbf{k}^{2}+(2 \pi n / \beta)^{2}}=-\beta^{-4} \pi^{3 / 2} \Gamma(-3 / 2) \zeta(-3)+\text { const. }
$$

quantized modes on circle

$$
\zeta(-3)=1+2^{3}+3^{3}+4^{3} \ldots=? ?
$$

This is related to the Cosmological constant problem.

Quantum Statistical Mechanics viewpoint.

Passing to euclidean time $\mathrm{t}=-\mathrm{i} \tau, \varrho_{\text {vac }}$ is just the finite temperature free energy on the cylinder with circumference $\beta=\mathrm{I} / \mathrm{T}$.

Quantum Statistical. Mech. gives a very different convergent expression.

$$
\rho_{\text {vac }}^{\mathrm{cyl}}=\frac{1}{\beta} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \log \left(1-e^{-\beta k}\right)=-\beta^{-4} \frac{\zeta(4)}{2 \pi^{3 / 2} \Gamma(3 / 2)}=-\frac{\pi^{2}}{90} T^{4} .
$$

black body

These two calculations must give the same result:

$$
\frac{\zeta(4)}{2 \pi^{3 / 2} \Gamma(3 / 2)}=\pi^{3 / 2} \Gamma(-3 / 2) \zeta(-3) \quad \text { ?? }
$$

YES!
Due to the amazing functional equation:

$$
\chi(z) \equiv \pi^{-z / 2} \Gamma(z / 2) \zeta(z)=\chi(1-z)
$$

(proven by Riemann)

Nature knows about analytic continuation:

$$
\begin{array}{rlrl}
\zeta(-3) & =1+2^{3}+3^{3}+4^{3}+\ldots \ldots \ldots . .=? \\
& =\frac{1}{120} \quad & \begin{array}{l}
\text { By analytic } \\
\end{array} & \text { continuation! }
\end{array}
$$

AL Int. J. Mod. Phys. (2008)

Zeta and Bose Einstein Condensation

The critical point for BEC in d spatial dimensions satisfies:

$$
n_{c} \lambda_{T}^{d}=\zeta(d / 2) \quad \lambda_{T}=\text { thermal de Broglie wavelength }=\hbar \sqrt{2 \pi / m k_{B} T}
$$

$B E C$ is not possible in $\mathrm{d}=2$ dimensions:

$$
\text { pole at } z=1: \quad \zeta(1)=\infty
$$

In physics, this is a manifestation of the Honenberg-Coleman-Mermin-Wagner theorem. In number theory this is a consequence of there being an infinite number of primes.

The distribution of Prime Numbers and Zeta

Prime number theorem

How many primes less than x ?
Gauss, a 15 years old boy, guessed in 1792

$$
\pi(x)=\sum_{p \leq x} 1 \approx \frac{x}{\log x} \approx \operatorname{Li}(x)
$$

$$
\operatorname{Li}(x)=\int_{0}^{x} \frac{d t}{\log t}
$$

- Chebyshev (1850) tried to prove using $\zeta(z)$
- Only proven 100 years later (1896) by Hadamard/de la Vallé Poussin $\zeta(1+i y) \neq 0$
whervie fom

Zeta and the Primes

The Golden Key: Euler

 product formula:(1737)

$p_{n}=\mathrm{n}-$ th prime

$$
\zeta(z)=1+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\frac{1}{4^{z}}+\ldots
$$

Sieve method:

$$
\begin{gathered}
\frac{1}{2^{z}} \zeta(z)=\frac{1}{2^{z}}+\frac{1}{4^{z}}+\frac{1}{6^{z}}+\ldots \\
\left(1-\frac{1}{2^{z}}\right) \zeta(z)=1+\frac{1}{3^{z}}+\frac{1}{5^{z}}+\ldots
\end{gathered}
$$

Remarks:

$$
\left(1-\frac{1}{3^{z}}\right)\left(1-\frac{1}{2^{z}}\right) \zeta(z)=1+\frac{1}{5^{z}}+\frac{1}{7^{z}}+\ldots
$$

r. Pole at $\mathrm{z}=\mathrm{r}$ implies there are an infinite number of primes (recall BEC).
2. There are no zeros with $\operatorname{Re}(z)>\mathrm{I}$ due to EPF. (will be important).

Riemann's Main Result

$$
\begin{gathered}
\pi(x)=\sum_{n \geq 1} \frac{\mu(n)}{n} J\left(x^{1 / n}\right) \\
J(x)=\operatorname{Li}(x)-\sum_{\rho} \operatorname{Li}\left(x^{\rho}\right)+\int_{x}^{\infty} \frac{d t}{\log t} \frac{1}{t\left(t^{2}-1\right)}-\log 2 \\
\varrho=\text { a zero on the critical strip }
\end{gathered}
$$

Derived using clever real and complex analysis.
Here, $\mu(n)$ is the Möbius function, equal to $1(-1)$ if n is a product of an even (odd) number of distinct primes, and equal to zero if it has a multiple prime factor. The above expression is actually a finite sum, since for large enough $n, x^{1 / n}<2$ and $J=0$.

Remark: if there are no zeros with real part equal to $\mathrm{I}, \mathrm{Li}(\mathrm{x})$ is the leading term. That's how the prime number theorem was proven.

To calculate primes, you need to calculate zeros. We obtained the converse, as we will see.

Mysteries of the Primes

How can the ordered set of the integers

$\{1,2,3,4,5, \ldots$.
give rise to the seemingly random series of primes:
$\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, \ldots\} ?$
"God may not play dice with the universe, but something strange is going on with the prime numbers." - Pomerance/Erdos
"...there is no apparent reason why one number is prime and another not. To the contrary, upon looking at these numbers one has the feeling of being in the presence of one of the inexplicable secrets of creation." Zagier 1977
"It is evident that the primes are randomly distributed but, unfortunately, we don't know what 'random' means." Vaughn 1990

We are going to use this pseudo-randomness of the primes to our advantage.

Generalized RH: Dirichlet L-functions

Axiomatic definition:

Arithmetic Dirichlet characters of modulus k:

1. $\chi(n+k)=\chi(n)$. (periodicity)
2. $\chi(1)=1$ and $\chi(0)=0$.
3. $\chi(n m)=\chi(n) \chi(m)$. (multiplicativity, the most important)
4. $\chi(n)=0$ if $(n, k)>1$ and $\chi(n) \neq 0$ if $(n, k)=1$.
5. If $(n, k)=1$ then $\chi(n)^{\varphi(k)}=1$, where $\varphi(k)$ is the Euler totient arithmetic function.

This implies that $\chi(n)$ are roots of unity. (roots of unity)
$\mathrm{k}=3$ example:

$$
\begin{array}{c|ccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \chi(n) & 1 & -1 & 0 & 1 & -1 & 0 & \text { etc }
\end{array}
$$

k=7 Examnle:

n	1	2	3	4	5	6	7
$\chi_{7,2}(n)$	1	$e^{2 \pi i / 3}$	$e^{\pi i / 3}$	$e^{-2 \pi i / 3}$	$e^{-\pi i / 3}$	-1	0

L-function: $\quad L(z, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{z}}=\prod_{n=1}^{\infty}\left(1-\frac{\chi\left(p_{n}\right)}{p_{n}^{z}}\right)^{-1} \quad p_{n}=\mathrm{n}-$ th prime
Also satisfies functional eqn.
relating $\mathrm{L}(\mathrm{z})$ to $\mathrm{L}\left(\mathrm{r}^{-} \mathrm{z}\right)$

Our Main Theorem:

change to standard notation : $z \rightarrow s=\sigma+i t$
Consider the series: $\quad B_{N}=\sum_{n=1}^{N} \cos \left(\lambda_{n}\right)$

$$
\lambda_{n}=t \log p_{n}-\arg \chi\left(p_{n}\right)
$$

Theorem: If $B_{N}=O(\sqrt{N})$ then the RH is true, since the EPF is valid for $\operatorname{Re}(s)>1 / 2$

* The significance of $\operatorname{Re}(s)>\mathrm{I} / 2$, i.e. right half of critical strip, arises from this square root,
* Why would $B_{N}=O(\sqrt{N})$? Because it behaves like a RANDOM WALK due to the multiplicative independence of the primes.

The Random Walk Property

Let $\mathrm{t}=\mathrm{o}$ for non-principal Dirichlet character:

$$
B_{N}=\sum_{n=1}^{N} \cos \left(\theta_{p_{n}}\right), \quad \theta_{p_{n}}=\arg \chi\left(p_{n}\right)
$$

*The angles $\theta_{p_{n}}$ are discrete and equally spaced on unit circle.

* The series behaves like a sum of independent, identically distributed random variables, i.e. a random walk [*delicate].
* Example of the $\mathrm{k}=3$ character:

$$
\chi(n) \text { over integers } \mathrm{n}:\{1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1, \ldots\}
$$

$$
\chi\left(p_{n}\right) \text { over primes } \mathrm{p}_{\mathrm{n}}:\{-1,0,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1, \ldots\}
$$

The original Riemann Zeta case

Actually more subtle than non-principal Dirichlet. All angles are zero and one has to consider:

$$
B_{N}=\sum_{n=1}^{N} \cos \left(t \log p_{n}\right)
$$

Theorem of Kac (1959) nearly does the job (proven at Cornell):
B_{N} / \sqrt{N} has a normal distribution in the limit $t \rightarrow \infty$
One needs a bit more (finite t), which I won't discuss here since it's a bit technical. [*delicate]

To be cautious, (although I believe we have a proof), we will only Conjecture that:

$$
\begin{array}{ll}
B_{N}=O(\sqrt{N}) & \begin{array}{l}
\text { the only thing left to rigorously } \\
\text { prove. [*delicate] }
\end{array}
\end{array}
$$

"there must be something mysterious about the normal law since mathematicians think it is a law of nature whereas physicists are convinced that it is a mathematical theorem." -POINCARE

Sketch of proof of main theorem:

One just needs to prove the EPF is valid to right of the critical line:
Theorem 2. For $\sigma>\frac{1}{2}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \zeta(\sigma+i t)=\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} \prod_{n=1}^{N}\left(1-\frac{1}{p_{n}^{\sigma+i t}}\right)^{-1} \tag{14}
\end{equation*}
$$

Proof. The proof is essentially the same as in [1, 2], so we just sketch the main steps involved. Taking the logarithm of the above equation, one concludes that the Euler product converges with $\sigma>\frac{1}{2}$ if the series $X_{N}(s)=\sum_{n=1}^{N} 1 / p_{n}^{s}$ converges as $N \rightarrow \infty$. It is enough to consider $\mathcal{S}_{N}=\Re\left(X_{N}\right):$

$$
\begin{equation*}
\mathcal{S}_{N}(s)=\sum_{n=1}^{N} a_{n} b_{n}, \quad a_{n}=\frac{1}{p_{n}^{\sigma}}, \quad b_{n}=\cos \left(t \log p_{n}\right) \tag{15}
\end{equation*}
$$

The latter can be reorganized using an Abel transform, i.e. summation by parts:

$$
\begin{equation*}
\mathcal{S}_{N}=a_{N} B_{N}+\sum_{n=1}^{N-1} B_{n}\left(a_{n}-a_{n+1}\right), \quad B_{n} \equiv \sum_{k=1}^{n} \cos \left(t \log p_{n}\right) \tag{16}
\end{equation*}
$$

The sum above is bounded

$$
\begin{equation*}
\left|\mathcal{S}_{N}\right| \leq \sigma \sum_{n=1}^{N-1}\left|B_{n}\right| \frac{g_{n}}{p_{n}^{\sigma+1}}+O(1) \tag{17}
\end{equation*}
$$

where $g_{n}=p_{n+1}-p_{n}$ is the gap between primes. One then performs another summation by parts using a summed version of the Cramér-Granville conjecture

$$
\begin{equation*}
\sum_{n=1}^{N} g_{n}<\sum_{n=1}^{N} \log ^{2} p_{n} \tag{18}
\end{equation*}
$$

The latter was proven in [6],[2]. Now if $\lim _{t \rightarrow \infty} B_{N}(t)=O(\sqrt{N})$ for large N, as far as convergence is concerned, the sum in (17) behaves as $\sum_{n} \log ^{2} n / n^{\sigma+1 / 2}$ which converges for $\sigma>\frac{1}{2}$.

Used prime \# thm. $\quad p_{n} \approx n \log n$

Numerical Evidence is compelling.

Random Walk property:

FIG. 1. The absolute value of the partial sum B_{N} versus N, for a fixed t. Left: We use (23) with $t=5 \cdot 10^{3}$. Note that N is below the cut-off (30). Right: Here we use (21) (u=1) with the character $\chi=\chi_{7,2}$ shown in (A3), and $t=5 \cdot 10^{2}$. In this case we can freely take the limit $N \rightarrow \infty$.

Convergence of EPF, next slide:

FIG. 4. The black line is the actual $|\zeta(3 / 4+i t)|$, analytically continued into the strip, and the blue line is the partial product $\left|\mathcal{P}_{N}(3 / 4+i t)\right|$. Dots are added to the line to aid visualization.

FIG. 6. Left: the black line corresponds to $|\zeta(\sigma+i t)|$ against $0<\sigma<1$, for $t=500$. The blue line is the partial product $\left|\mathcal{P}_{N}(\sigma+i t)\right|$ with $N=10^{4}$. Right: the black line is the exact $|\zeta|$, and the blue line is the partial product $\left|\mathcal{P}_{N}\right|$ (with $N=8 \cdot 10^{3}$), against t. We took $\sigma=0.4$. The red dots are the Cesàro average $\left|\left\langle\mathcal{P}_{N}\right\rangle\right|$. If we increase N the results are even worse

Transcendental equations for individual zeros.

AL Int. J. Mod. Phys. A28 (2013)
G. França, AL, Comm. Numb. Theory and Phys. 2015

Everyone here knows one function with an infinite number of zeros along a line in the complex z-plane.

$$
\begin{gathered}
\cos (z)=0 \\
\text { for } z=(n+I / 2) \pi
\end{gathered}
$$

The single equation $\zeta(\rho)=0$ has an infinite number of solutions. We replace it with an infinite number of equations, one for each zero, in one-to-one correspondence with zeros of a cosine.

The n-th zero satisfies a Transcendental Equation that depends only on n.

How to quickly derive this equation (omitting some details):

$$
\begin{aligned}
& \text { Recall : } \quad \chi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\chi(1-s) \\
& \text { If } \chi(\rho)=0 \text {, then } \chi(\rho)+\chi(1-\rho)=0
\end{aligned}
$$

$$
\text { write } \quad \chi=A e^{i \phi}
$$

on critical line : $\quad \cos \phi=0 \Longrightarrow \phi=\left(n-\frac{3}{2}\right) \pi$
$\mathrm{n}-$ th zero: $\quad \rho_{n}=\frac{1}{2}+i t_{n}$
$\phi=\Im \log \Gamma\left(\frac{1}{4}+i t_{n} / 2\right)-t_{n} \log \sqrt{\pi}+\lim _{\delta \rightarrow 0^{+}} \arg \zeta\left(\frac{1}{2}+\delta+i t_{n}\right)=\left(n-\frac{3}{2}\right) \pi$

Important: For arg = the phase, one must keep track of the branches, i.e. it is on a multi-sheeted Riemann surface.

Solving the exact version of the transcendental equation gives zeros to any desired accuracy.

The rooo-th zero to 500 digits:

> 1419.42248094599568646598903807991681923210060106416601630469081468460 8676417593010417911343291179209987480984232260560118741397447952650637 0672508342889831518454476882525931159442394251954846877081639462563323 8145779152841855934315118793290577642799801273605240944611733704181896 2494747459675690479839876840142804973590017354741319116293486589463954 5423132081056990198071939175430299848814901931936718231264204272763589 1148784832999646735616085843651542517182417956641495352443292193649483 857772253460088
\qquad with very simple Mathematica commands.

Another Theorem: If there is a unique solution to this equation for every n, then the RH is true and all zeros are simple.

PROOF: If there is a unique solution to this equation for every n, since they are enumerated by n , we can count how many zeros are on the critical line up to a height $\mathrm{t}=\mathrm{T}$.
$\mathrm{N}_{\mathrm{o}}(\mathrm{T})=$ number of zeros on the line with ordinate $\mathrm{t}<\mathrm{T}$. The above formula implies (for large T):

$$
N_{0}(T)=\frac{T}{2 \pi} \log \left(\frac{T}{2 \pi e}\right)+\frac{7}{8}+\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)+O\left(T^{-1}\right)
$$

Now: $\quad N(T)=$ number of zeros on the entire critical strip has been known for over ioo years by performing a certain contour integral (argument principle) around the strip (Riemann, Backlund).

$$
\text { our } \mathrm{N}_{\mathrm{o}}(\mathrm{~T})=\text { the known } \mathrm{N}(\mathrm{~T})
$$

Thus: all zeros are on the line if one can prove there is a unique solution. The EPF can be used to show this. [*delicate]

Calculating very high zeros from primes

Recall Riemann's main result: to calculate primes, one needs to know the zeros of zeta.

We can obtain the converse: to calculate zeros, you need to know all the primes!

HOW: Use the Stirling approximation for log Gamma, and the Euler Product Formula for arg Zeta.

Let $t_{n: N}$ denote the n -th zero computed using N primes. (ordinate)

$$
\frac{t_{n ; N}}{2} \log \left(\frac{t_{n ; N}}{2 \pi e}\right)-\frac{\pi}{8}+\frac{1}{48 t_{n ; N}}-\lim _{\delta \rightarrow 0^{+}} \Im \sum_{k=1}^{N} \log \left(1-\frac{1}{p_{k}^{1 / 2+\delta+i t_{n ; N}}}\right)=\left(n-\frac{3}{2}\right) \pi
$$

Every individual zero knows about all the primes!

If $\mathrm{N}=\mathrm{o}$ primes, there is a unique solution in terms of the Lambert W

$$
t_{n ; 0}=\widetilde{t}_{n} \equiv \frac{2 \pi\left(n-\frac{11}{8}\right)}{W\left[\left(n-\frac{11}{8}\right) / e\right]}
$$

function:
(previously unknown)

W is defined to satisfy:

$$
W(z) e^{W(z)}=z
$$

Lambert W was first studied by Lambert in the 1758. Euler recognized its importance in 1779 in a paper on transcendental equations, and credited Lambert. He was the first to prove Pi is irrational (Euler tried), and introduced hyperbolic functions like cosh.

It's importance was only realized in the 1990's, when it finally obtained the name the Lambert W-function.

Lambert approximation:

Check high zeros with a million primes:

n	$t_{n ; N}$	t_{n} (Odlyzko)
$10^{21}-1$	144176897509546973538.205	$\sim .225$
10^{21}	144176897509546973538.301	$\sim .291$
$10^{21}+1$	144176897509546973538.505	$\sim .498$
$10^{22}-1$	1370919909931995308226.498	$\sim .490$
10^{22}	1370919909931995308226.614	$\sim .627$
$10^{22}+1$	1370919909931995308226.692	$\sim .680$

The googol-th zero:

$$
n=10^{100}-\text { th zero : }
$$

$$
t_{n}=280690383842894069903195445838256400084548030162846
$$

$$
045192360059224930922349073043060335653109252473.244 \ldots
$$

Conclusions

- The validity of the RH appears to need both the EPF and the functional equation.
- These two work together: The validity of the EPF and existence of solutions to the transcendental equations are closely related.
- Known counter-examples to RH have no EPF, and there are no solutions of the transcendental equation for all n .
- We extended to another infinite class of L-functions based on modular forms. Brings in reasonably recent (1975) results of Deligne in his proof of the Weil conjectures.
- A unified perspective on different of L-functions
- Only thing left to rigorously prove is the random walk property $\quad B_{N}=O(\sqrt{N})$

