THE RIEMANN HYPOTHESIS FOR PHYSICISTS

ANDRÉ LECLAIR
CORNELL UNIVERSITY

University of North Carolina April 2014

Outline

- Riemann Zeta in Quantum Statistical Physics.
- Riemann Hypothesis
- Zeta and the distribution of Prime Numbers.
- Zeta and Random Matrix Theory.
- My work.

Riemann Zeta Function was present at the birth of Quantum Mechanics:

On the Law of Distribution of Energy in the Normal Spectrum

Max Planck

Annalen der Physik, vol. 4, p. 553 ff (1901)

On the other hand, according to equation (12) the energy density of the total radiant energy for $\theta=1$ is:

$$
\begin{aligned}
u^{*} & =\int_{0}^{\infty} u d \nu=\frac{8 \pi h}{c^{3}} \int_{0}^{\infty} \frac{\nu^{3} d \nu}{e^{h \nu / k}-1} \longleftarrow \text { Bose-Einstein distribution } \\
& =\frac{8 \pi h}{c^{3}} \int_{0}^{\infty} \nu^{3}\left(e^{-h \nu / k}+e^{-2 h \nu / k}+e^{-3 h \nu / k}+\cdots\right) d \nu
\end{aligned}
$$

and by termwise integration:

$$
\begin{aligned}
u^{*} & =\frac{8 \pi h}{c^{3}} \cdot 6\left(\frac{k}{h}\right)^{4}\left(1+\frac{1}{24}+\frac{1}{34}+\frac{1}{44}+\cdots\right) \\
& =\frac{48 \pi k^{4}}{c^{3} h^{3}} \cdot 1.0823
\end{aligned}
$$

A very bad typo of the English translation. Should read:

$$
1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\ldots . .=\zeta(4)=\frac{\pi^{4}}{90}=1.0823
$$

The Riemann Zeta Function

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}=1+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\ldots, \quad \Re(z)>1
$$

It can be analytically continued to the whole complex $z=$ plane. For example, by considering "fermions":

$$
\zeta(z)=\frac{1}{\Gamma(z)\left(1-2^{1-z}\right)} \int_{0}^{\infty} d t \frac{t^{z-1}}{e^{t}+1}, \quad \Re(z)>0 \quad(\Gamma(n+1)=n!)
$$

Trivial zeros: $\quad \zeta(-2)=\zeta(-4)=\zeta(-6) \ldots=0$

Bose-Einstein Condensation and Zeta

Density in 3 spatial dimensions:

$$
n=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{e^{\omega_{\mathbf{k}} / T}-1}=\left(\frac{m T}{2 \pi}\right)^{3 / 2} \zeta(3 / 2), \quad\left(\omega_{\mathbf{k}}=\mathbf{k}^{2} / 2 m\right)
$$

Density in 2 spatial dimensions:

$$
n=\left(\frac{m T}{2 \pi}\right) \zeta(1)
$$

Harmonic series:

$$
\zeta(1)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots=\infty
$$

Zeta has a pole at $\mathrm{z}=\mathrm{I}$

There is no BEC in 2 dimensions. This is a special case of the Coleman-Mermin-Wagner Theorem.

The Casimir effect and Zeta

energy density: $\quad \rho_{\mathrm{vac}}^{\mathrm{cas}}=-\pi^{2} / 720 \ell^{4}$.
This effect has been measured.
For now note: $720=6 \times 120$

Cylindrical version of Casimir effect

Just change boundary conditions: join plates at edges to have periodic b.c.

Relation to Casimir: $\quad \rho_{\mathrm{vac}}^{\mathrm{cas}}(\ell)=2 \rho_{\mathrm{vac}}^{\mathrm{cyl}}(\beta=2 \ell)$

$$
\begin{aligned}
& \rho_{\text {vac }}^{\text {cyl }}=\frac{1}{2 \beta} \sum_{n \in \mathbb{Z}} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \sqrt{\mathbf{k}^{2}+(2 \pi n / \beta)^{2}}=-\beta^{-4} \pi^{3 / 2} \Gamma(-3 / 2) \zeta(-3)+\text { const. } \\
& \text { quantized modes on circle } \quad \\
& \text { divergent as UV cutoff } \\
& \mathbf{k}_{\mathbf{c}} \rightarrow \infty . \\
& \text { This is the Cosmological } \\
& \text { constant problem. }
\end{aligned}
$$

$$
\begin{aligned}
\zeta(-3) & =1+2^{3}+3^{3}+4^{3}+\ldots \ldots . .=? \\
& =\frac{1}{120} \quad \text { By analytic continuation! }
\end{aligned}
$$

Quantum Statistical Mechanics viewpoint.

Passing to euclidean time $\mathrm{t}=-\mathrm{i} \tau, \varrho_{\text {vac }}$ is just the finite temperature free energy on the cylinder with circumference $\beta=\mathrm{I} / \mathrm{T}$.

Euclidean time τ

Quantum Statistical. Mech. gives a very different convergent expression.

$$
\rho_{\text {vac }}^{\mathrm{cyl}}=\frac{1}{\beta} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \log \left(1-e^{-\beta k}\right)=-\beta^{-4} \frac{\zeta(4)}{2 \pi^{3 / 2} \Gamma(3 / 2)}=-\frac{\pi^{2}}{90} T^{4} .
$$

YES!
black body

$$
=-\beta^{-4} \pi^{3 / 2} \Gamma(-3 / 2) \zeta(-3)
$$

Due to the amazing functional equation:

$$
\chi(z) \equiv \pi^{-z / 2} \Gamma(z / 2) \zeta(z)=\chi(1-z)
$$

AL Int. J. Mod. Phys. A23 (2008)

Riemann Hypothesis: All non-trivial zeros of Zeta have real part $\mathrm{m} / 2$. That is they are of the form:

1859

$$
\zeta(\rho)=0, \quad \rho=\frac{1}{2}+i y
$$

Some Riemann Zeros:

Can enumerate zero along $y^{-a x i s}$:

$$
\mathrm{n}-\text { th zero on critical line }: \quad \rho_{n}=\frac{1}{2}+i y_{n}
$$

n	y_{n}
1	14.1347251417346937904572519835624702707842571156992431756855
2	21.0220396387715549926284795938969027773343405249027817546295
3	25.0108575801456887632137909925628218186595496725579966724965
4	30.4248761258595132103118975305840913201815600237154401809621
5	32.9350615877391896906623689640749034888127156035170390092800

Known: the first IO^{13} zeros are on the critical line. (numerically).

The distribution of Prime Numbers and Zeta

Prime number theorem

How many primes less than x ?
Gauss, a 15 years old boy, guessed in 1792

$$
\pi(x)=\sum_{p \leq x} 1 \approx \frac{x}{\log x} \approx \operatorname{Li}(x)
$$

$$
\operatorname{Li}(x)=\int_{0}^{x} \frac{d t}{\log t}
$$

- Chebyshev (1850) tried to prove using $\zeta(z)$
- Only proven 100 years later (1896) by Hadamard/de la Vallé Poussin $\zeta(1+i y) \neq 0$

Noterovale inm

Works quite well:

Zeta and the Primes

The Golden Key: Euler

 product formula:(1737)

$$
\begin{gathered}
\zeta(z)=1+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\frac{1}{4^{z}}+\ldots \\
\frac{1}{2^{z}} \zeta(z)=\frac{1}{2^{z}}+\frac{1}{4^{z}}+\frac{1}{6^{z}}+\ldots \\
\left(1-\frac{1}{2^{z}}\right) \zeta(z)=1+\frac{1}{3^{z}}+\frac{1}{5^{z}}+\ldots \\
\left(1-\frac{1}{3^{z}}\right)\left(1-\frac{1}{2^{z}}\right) \zeta(z)=1+\frac{1}{5^{z}}+\frac{1}{7^{z}}+\ldots
\end{gathered}
$$

Remark: pole at $z=1$ implies there are an infinite number of primes.

Riemann's Main Result

$$
\begin{gathered}
\pi(x)=\sum_{n \geq 1} \frac{\mu(n)}{n} J\left(x^{1 / n}\right) \\
J(x)=\operatorname{Li}(x)-\sum_{\rho} \operatorname{Li}\left(x^{\rho}\right)+\int_{x}^{\infty} \frac{d t}{\log t} \frac{1}{t\left(t^{2}-1\right)}-\log 2 \\
\varrho=\text { a zero on the critical strip }
\end{gathered}
$$

Derived using clever real and complex analysis.
Here, $\mu(n)$ is the Möbius function, equal to $1(-1)$ if n is a product of an even (odd) number of distinct primes, and equal to zero if it has a multiple prime factor. The above expression is actually a finite sum, since for large enough $n, x^{1 / n}<2$ and $J=0$.

Remark: if there are no zeros with real part equal to $\mathrm{I}, \mathrm{Li}(\mathrm{x})$ is the leading term.

Zeta and Random Matrix Theory

The distribution of zeros on the critical line appears random, but is not completely random.

Dyson studied the properties of eigenvalues of random hamiltonians H . Though H is random, the spacing of its eigenvalues has predictable properties. ("level repulsion")

Montgomery studied the "pair correlation function" of the zeros of zeta. Dyson pointed out that was for the same as the GUE! (1973). Verified numerically for high zeros by Odlyzko (1987)

Gaussian Unitary Ensemble = exponential of random hamiltonian

Electrostatic Depiction of Zeta

AL Int. J. Mod. Phys. A28 (2013)
The key function of our work: the partition function of a photon:

$$
\chi(z) \equiv \pi^{-z / 2} \Gamma(z / 2) \zeta(z)=\chi(1-z)
$$

$$
\begin{gathered}
\xi(z) \equiv \frac{1}{2} z(z-1) \chi(z)=\frac{1}{2} z(z-1) \pi^{-z / 2} \Gamma(z / 2) \zeta(z) \\
\xi(z)=u(x, y)+i v(x, y)
\end{gathered}
$$

Define an electric field from real and imaginary parts:

$$
\vec{E}=E_{x} \widehat{x}+E_{y} \widehat{y} \equiv u(x, y) \widehat{x}-v(x, y) \widehat{y}
$$

It is "electrostatic" by virtue of Cauchy-Riemann eqns:

$$
\vec{\nabla} \cdot \vec{E}=0, \quad \vec{\nabla} \times \vec{E}=0
$$

The electric potential is:

$$
\begin{gathered}
\vec{E}=-\vec{\nabla} \Phi, \quad \Phi(x, y)=\frac{1}{2}(\varphi(z)+\bar{\varphi}(\bar{z})) \\
\varphi(z)=-8 \int_{1}^{\infty} d\left[t^{3 / 2} g^{\prime}(t)\right] \frac{t^{-1 / 4}}{\log t} \sinh \left[\frac{1}{2}\left(z-\frac{1}{2}\right) \log t\right] \quad g(t)=\frac{1}{2}\left(\vartheta_{3}\left(0, e^{-\pi t}\right)-1\right)
\end{gathered}
$$

Riemann zeros occur where two electric potential contours intersect.

Near the first zero on the critical strip:

The potential of hypothetical zero off the critical line:

The Riemann Hypothesis is true if the electric potential along the line $\operatorname{Re}(z)=1$ is a "regular alternating function", i.e. only has one maximum or minimum between zeros on the critical line.

Contour plot of the potential between two consecutive zeros:

Regular alternating electric potential along the line $\operatorname{Re}(z)=I$ between first two zeros.

Transcendental equations for individual zeros.

AL Int. J. Mod. Phys. A28 (2013)
G. França, AL arXiv: 1307.8395, 1309.7019

Everyone here knows one function with an infinite number of zeros along a line in the complex z-plane........

$$
\begin{gathered}
\cos (z)=0 \\
\text { for } z=(n+I / 2) \pi
\end{gathered}
$$

Our result: There are an infinite number of zeros of zeta along critical line in one-to-one correspondence with the zeros of cosine.

The n-th zero satisfies a Transcendental Equation that depends on n.

How to derive this equation:
Write:

$$
\begin{aligned}
& \chi(z)=\chi(x+i y)=A(x, y) e^{i \theta(x, y)} \\
& \chi(1-z)=\chi(1-x-i y)=A^{\prime}(x, y) e^{i \theta^{\prime}(x, y)}
\end{aligned}
$$

$$
\text { If } \rho \text { is a zero : } \quad \begin{array}{ll}
& \chi(\rho)+\chi(1-\rho)=0 \\
& \Longrightarrow e^{i \theta}+e^{-i \theta^{\prime}}=0
\end{array}
$$

The particular solution $\theta=\theta^{\prime}, \quad \cos (\theta)=0$
gives an infinite number of zeros on the critical line

There exists an infinite number of zeros of zeta satisfying

$$
\theta(\mathrm{x}=\mathrm{I} / 2, \mathrm{y})=(\mathrm{n}+\mathrm{I} / 2) \pi
$$

$\theta(\mathrm{x}=\mathrm{I} / 2, \mathrm{y})=(\mathrm{n}+\mathrm{I} / 2) \pi \quad$ is a transcendental equation for the ordinate y_{n} of the n-th Riemann zero:

In the limit of large y :
The $\mathrm{n}-$ th zero is of the form $\quad \rho=\frac{1}{2}+i y_{n}$

To a very good approximation, the n -th zero satisfies: $\quad y_{n} \approx \widetilde{y}_{n}$

$$
\frac{\widetilde{y}_{n}}{2 \pi} \log \left(\frac{\widetilde{y}_{n}}{2 \pi e}\right)=n-\frac{11}{8}
$$

The solution is explicitly given in terms of an elementary function: the

$$
\widetilde{y}_{n}=\frac{2 \pi\left(n-\frac{11}{8}\right)}{W\left[e^{-1}\left(n-\frac{11}{8}\right)\right]}
$$

Lambert W-function:

W is defined to satisfy:

$$
W(z) e^{W(z)}=z
$$

Lambert W was first studied by Lambert in the 1758. Euler recognized its importance in 1779 in a paper on transcendental equations, and credited Lambert.

It's importance was only realized in the 1990's, when it finally obtained the name the Lambert W-function.

n	\widetilde{y}_{n}	y_{n}
1	14.52	14.134725142
10	50.23	49.773832478
10^{2}	235.99	236.524229666
10^{3}	1419.52	1419.422480946
10^{4}	9877.63	9877.782654006
10^{5}	74920.89	74920.827498994
10^{6}	600269.64	600269.677012445
10^{7}	4992381.11	4992381.014003180
10^{8}	42653549.77	42653549.760951554
10^{9}	371870204.05	371870203.837028053
10^{10}	3293531632.26	3293531632.397136704

The io999 -th zero to iooo digits based on Lambert

W:
2.7418985289770733523380199967281384304396404342236129703462008148794017483102 288989728527567413645122744311921172826961083680270092169498827568635959416113 429885386834142256620793027203450326850405406192401605278151278292126757823589 021159380557496232240667437943583994705834760582066723674368091278444158666608 455977853018177282026565267255273883601499075355217444189231104752684424593438 624806198537729334547336147304637269663107947384735659921127394121662743671648 211294886601858945279496294727955094639029288094054687941252225478426786182046 523221704263095085135100819383398596169703987228336044024659350088753385324537 829732202404696954235778305250096210562727012320495894109605623304319565563992 484717380637709436240220452151111044939346281951249654746987540134824713871321 328533373296657458895502274291514524646315414320664466625774466094199153901000 163674331154397634011868264241305320165870441692798635788965590575893640872077 63792090920744162661827244311481936682248189296258020149248439142
$\times 10^{996}$

The $10999+\mathrm{I}$-th zero to 1000 digits based on

 Lambert W:2.7418985289770733523380199967281384304396404342236129703462008148794017483102 288989728527567413645122744311921172826961083680270092169498827568635959416113 429885386834142256620793027203450326850405406192401605278151278292126757823589 021159380557496232240667437943583994705834760582066723674368091278444158666608 455977853018177282026565267255273883601499075355217444189231104752684424593436 624806198537729334547336147304637269663107947384735659921127394121662743671648 211294886601858945279496294727955094639029288094054687941252225478426786182046 523221704263095085135100819383398596169703987228336044024659350088753385224537 829732202404696954235778305250096210562727012320495894109605623304319566563992 $4847173806377094362402204521511110449393462819512496547469875401348247 / 3871321$ $32853337329665745889550227429151452464631541432066446662577446609419 夕 153901000$ 163674331154397634011868264241305320165870441692798635788965590575893640872077 63792090920744162661827244311481936682248189296258020149248439145

Solutions of the asymptotic transcendental equation are accurate enough to reveal the GUE statistics:

Solving the exact version of the transcendental equation gives zeros to any desired accuracy.

The rooo-th zero to 500 digits:

> 1419.42248094599568646598903807991681923210060106416601630469081468460 8676417593010417911343291179209987480984232260560118741397447952650637 0672508342889831518454476882525931159442394251954846877081639462563323 8145779152841855934315118793290577642799801273605240944611733704181896 2494747459675690479839876840142804973590017354741319116293486589463954 5423132081056990198071939175430299848814901931936718231264204272763589 1148784832999646735616085843651542517182417956641495352443292193649483 857772253460088
\qquad with very simple Mathematica commands.

How to prove the Riemann Hypothesis

Recall our main result:

The $\mathrm{n}-$ th zero is of the form $\quad \rho=\frac{1}{2}+i y_{n}$

$$
\frac{y_{n}}{2 \pi} \log \left(\frac{y_{n}}{2 \pi e}\right)+\lim _{\delta \rightarrow 0^{+}} \frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+\delta+i y_{n}\right)=n-\frac{11}{8} \quad(n=1,2, \ldots)
$$

If there is a unique solution to this equation for every n, since they are enumerated by n , we can count how many zeros are on the critical line up to a height $\mathrm{y}=\mathrm{T}$.
$N_{o}(T)=$ number of zeros on the line with ordinate $y<T$. The above formula implies:

$$
N_{0}(T)=\frac{T}{2 \pi} \log \left(\frac{T}{2 \pi e}\right)+\frac{7}{8}+\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)+O\left(T^{-1}\right)
$$

Now: $\quad N(T)=$ number of zeros on the entire critical strip has been known for over ioo years by performing a certain contour integral (argument principle) around the strip (Riemann, Backlund).

$$
\text { our } \mathrm{N}_{\mathrm{o}}(\mathrm{~T})=\text { the known } \mathrm{N}(\mathrm{~T})
$$

Thus: all zeros are on the line.

