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3 Numerical Values

§11. The values of both universal constants h and k may be calculated rather precisely with the aid of

available measurements. F. Kurlbaum14, designating the total energy radiating into air from 1 sq cm of

a black body at temperature t◦C in 1 sec by St, found that:

S100 − S0 = 0.0731 · watt

cm2
= 7.31 · 10

5 · erg

cm2 · sec
From this one can obtain the energy density of the total radiation energy in air at the absolute temperature

1:

4 · 7.31 · 105

3 · 1010 · (3734 − 2734)
= 7.061 · 10

−15 · erg

cm3 · deg
4

On the other hand, according to equation (12) the energy density of the total radiant energy for θ = 1 is:
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� ∞

0
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8πh

c3

� ∞

0

ν3dν

ehν/k − 1

=
8πh

c3

� ∞

0
ν3

(e−hν/k
+ e−2hν/k

+ e−3hν/k
+ · · ·)dν

and by termwise integration:

u∗ =
8πh

c3
· 6

�
k

h

�4 �
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24
+
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34
+

1

44
+ · · ·

�

=
48πk4

c3h3
· 1.0823

If we set this equal to 7.061 · 10−15, then, since c = 3 · 1010 cm/sec, we obtain:

k4

h3
= 1.1682 · 10

15
(14)

§12. O. Lummer and E. Pringswim15 determined the product λmθ, where λm is the wavelength of

maximum energy in air at temperature θ, to be 2940 micron·degree. Thus, in absolute measure:

λm = 0.294 cm · deg

On the other hand, it follows from equation (13), when one sets the derivative of E with respect to θ
equal to zero, thereby finding λ = λm

�
1− ch

5kλmθ

�
· ech/kλmθ

= 1

and from this transcendental equation:

λmθ =
ch

4.9651 · k
consequently:

h

k
=

4.9561 · 0.294

3 · 1010
= 4.866 · 10

−11

From this and from equation (14) the values for the universal constants become:

h = 6.55 · 10
−27

erg · sec (15)

k = 1.346 · 10
−16 · erg

deg
(16)

These are the same number that I indicated in my earlier communication.

14F. Kurlbaum, Wied. Ann. 65 (1898), p. 759.
15O. Lummer and Pringsheim, Transactions of the German Physical Society 2 (1900), p. 176.
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Riemann Zeta Function was present 
at the birth of Quantum Mechanics:

Bose-Einstein distribution

A very bad typo of the English translation.   Should read:  
TEX for keynote
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The Riemann Zeta Function
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Trivial zeros: 

It can be analytically continued to the whole complex z=plane.  For example, 
by considering “fermions”:  
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Bose-Einstein Condensation and Zeta
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Density in 3 spatial dimensions: 
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Density in 2 spatial dimensions: 
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Harmonic series:  

There is no BEC in 2 dimensions.  This is a special 
case of the Coleman-Mermin-Wagner Theorem.  

Zeta has a pole at z=1



The Casimir effect  and Zeta 
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separation = 
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Force=

these are invariant if the partition functions are multiplied by a common factor as

induced by a global shift of the energies. Based on his understanding of quantum

electrodynamics and his own treatment of the Casimir effect, Schwinger once said

[7], “...the vacuum is not only the state of minimum energy, it is the state of zero

energy, zero momentum, zero angular momentum, zero charge, zero whatever.” A

quantum consequence of this for instance is the fact that photons do not scatter

off the vacuum energy. All of this strongly suggests that it is impossible to harness

vacuum energy in order to do work, which in turn calls into question whether it could

be a source of gravitation.

The Casimir effect is often correctly cited as proof of the reality of vacuum energy.

However it needs to be emphasized that what is actually measured is the change of

the vacuum energy as one varies a geometric modulus, i.e. how it depends on this

modulus, and this is unaffected by an arbitrary shift of the zero of energy. The classic

experiment is to measure the force between two plates as one changes their separation;

the modulus in question here is the distance � between the plates and the force

depends on how the vacuum energy varies with this separation. The Casimir force

F (�) is minus the derivative of the electrodynamic vacuum energy Evac(�) between

the two plates, F (�) = −dEvac(�)/d�. An arbitrary shift of the vacuum energy

by a constant that is independent of � does not affect the measurement. For the

electromagnetic field, with two polarizations, the well-known result is that the energy

density between the plates is ρcasvac = −π2/720�4. Note that this is an attractive force;

as we will see, in the cosmic context a repulsive force requires an over-abundance of

fermions.

Let us illustrate the above remark on the Casimir effect with another version of

it: the vacuum energy in the finite size geometry of a higher dimensional cylinder.

Namely, consider a massless quantum bosonic field on a Euclidean space-time geom-

etry of S1 ⊗ R3
where the circumference of the circle S1

is β. Viewing the compact

3
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This effect has been measured.  
For now note:   720 = 6 x 120



Cylindrical version of Casimir effect
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Just change boundary conditions:  join plates at edges to have periodic b.c. 

One compactified 
spatial dimension of 
circumference β

2 dim’l space + time

direction as spatial, the momenta in that direction are quantized and the vacuum

energy density is

ρcylvac =
1

2β

�

n∈ZZ

�
d2k

(2π)2
�

k2 + (2πn/β)2 = −β−4π3/2Γ(−3/2)ζ(−3) + const. (2)

Due to the different boundary conditions in the periodic verses finite size directions,

ρcasvac(�) = 2ρcylvac(β = 2�), where the overall factor of 2 is because of the two photon

polarizations. The above integral is divergent, however if one is only interested in its

β-dependence, it can be regularized using the Riemann zeta function giving the above

expression. Note that the constant that has been discarded in the regularization is

actually at the origin of the CCP. What is measurable is the β dependence. One way

to convince oneself that this regularization is meaningful is to view the compactified

direction as Euclidean time, where now β = 1/T is an inverse temperature. The

quantity ρcylvac is now the free energy density of a single scalar field, and standard

quantum statistical mechanics gives the convergent expression:

ρcylvac =
1

β

�
d3k

(2π)3
log

�
1− e−βk

�
= −β−4 ζ(4)

2π3/2Γ(3/2)
. (3)

The two above expressions (2, 3) are equal due to a non-trivial functional identity

satisfied by the ζ function: ξ(ν) = ξ(1 − ν) where ξ(ν) = π−ν/2Γ(ν/2)ζ(ν). (See

for instance the appendix in [8].) The comparison of eqns. (2,3) strongly manifests

the arbitrariness of the zero-point energy: whereas there is a divergent constant in

(2), from the point of view of quantum statistical mechanics, the expression (3) is

actually convergent. Either way of viewing the problem allows a shift of ρcylvac by

an arbitrary constant with no measurable consequences. For instance, such a shift

would not affect thermodynamic quantities like the entropy or density since they are

derivatives of the free energy; the only thing that is measurable is the β dependence.

We now include gravity in the above discussion. Before stating the basic hy-

potheses of our study, we begin with general motivating remarks. All forms of energy

4

divergent as UV cutoff
kc  → ∞.  
This is the Cosmological 
constant problem.  
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Relation to Casimir:
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By analytic continuation! 



Quantum Statistical Mechanics viewpoint. 

Passing to euclidean time  t = -i τ,   ρvac  is just the finite temperature free 
energy on the cylinder with circumference  β = 1/T.

Euclidean time τ 
with circumference 
β=1/T

3 dim’l space
Quantum Statistical. Mech. 

gives a very different
convergent expression.  
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effect with another version of it: the vacuum energy in the finite size geometry of a

higher dimensional cylinder. Namely, consider a massless quantum bosonic field on

a Euclidean space-time geometry of S1⊗R3 where the circumference of the circle S1

is β. Viewing the compact direction as spatial, the momenta in that direction are
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Due to the different boundary conditions in the periodic verses finite size directions,

ρcasvac(%) = 2ρcylvac(β = 2%), where the overall factor of 2 is because of the two photon

polarizations. The above integral is divergent, however if one is only interested in

its β-dependence, it can be regularized using the Riemann zeta function giving the

above expression. Note that the (infinite) constant that has been discarded in the

regularization is actually at the origin of the CCP. What is measurable is the β

dependence. One way to convince oneself that this regularization is meaningful is to

view the compactified direction as Euclidean time, where now β = 1/T is an inverse

temperature. The quantity ρcylvac is now the free energy density of a single scalar field,
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satisfied by the ζ function: ξ(ν) = ξ(1 − ν) where ξ(ν) = π−ν/2Γ(ν/2)ζ(ν). (See

for instance the appendix in [8] in this context.) The comparison of eqns. (2,3)

strongly manifests the arbitrariness of the zero-point energy: whereas there is a

divergent constant in (2), from the point of view of quantum statistical mechanics,

the expression (3) is actually convergent. Either way of viewing the problem allows a

shift of ρcylvac by an arbitrary constant with no measurable consequences. For instance,
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YES!
Due to the 
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Riemann Hypothesis:   All non-trivial zeros of 
Zeta have real part 1/2.  That is they are of the 
form: 
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Some Riemann Zeros:

n yn

1 14.1347251417346937904572519835624702707842571156992431756855

2 21.0220396387715549926284795938969027773343405249027817546295

3 25.0108575801456887632137909925628218186595496725579966724965

4 30.4248761258595132103118975305840913201815600237154401809621

5 32.9350615877391896906623689640749034888127156035170390092800

TABLE VI: The first few numerical solutions to (20), accurate to 60 digits (58 decimals). These

solutions were obtained using the root finder function in Mathematica.

It is known that the first zero where Gram’s law fails is for n = 126. Applying the same

method, like for any other n, the solution of (20) starting with the approximation (25) does

not present any difficulty. We easily found the following number:

279.229250927745189228409880451955359283492637405561293594727 (n = 126)

Just to illustrate, and to convince the reader, how the solutions of (20) can be made arbi-

trarily precise, we compute the zero n = 1000 accurate up to 500 decimal places, also using

the same simple approach [35]:

1419.42248094599568646598903807991681923210060106416601630469081468460

8676417593010417911343291179209987480984232260560118741397447952650637

0672508342889831518454476882525931159442394251954846877081639462563323

8145779152841855934315118793290577642799801273605240944611733704181896

2494747459675690479839876840142804973590017354741319116293486589463954

5423132081056990198071939175430299848814901931936718231264204272763589

1148784832999646735616085843651542517182417956641495352443292193649483

857772253460088

Substituting precise Riemann zeros calculated by other means [21] into (20) one can check

that the equation is identically satisfied. These results corroborate that (20) is an exact

equation for the Riemann zeros, which was derived on the critical line.

VIII. FINAL REMARKS

Let us summarize our main results and arguments. Throughout this paper we did not

assume the Riemann hypothesis. The main outcome was the demonstration that there are
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Known:   the first 1013 zeros are on the critical line.   (numerically).



Prime number theorem

How many primes less than x?

Gauss, a 15 years old boy, guessed in 1792

ı(x) =
X

p»x

1 ı x

logx
ı Li(x)

Li(x) =

Z x

0

dt

log t

› Chebyshev (1850) tried to prove using “(z)
› Only proven 100 years later (1896)
by Hadamard/de la Vallé Poussin “(1 + iy) 6= 0

3

The distribution of Prime Numbers and Zeta
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Zeta and the Primes 

Remark:   pole at z=1 implies there are an 
infinite number of primes.  
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The Golden Key:  Euler 
product formula: 

(1737)



Riemann’s Main Result

Remark:  if there are no zeros with real 
part equal to 1,  Li(x)  is the leading term. 

the non-trivial zeros of ζ(z). There are simpler but equivalent versions of the main result,

based on the function ψ(x) below. However, let us present the main formula for π(x) itself,

since it is historically more important.

The function π(x) is related to another number-theoretic function J(x), defined as

J(x) =
�

2≤n≤x

Λ(n)

log n
(29)

where Λ(n), the von Mangoldt function, is equal to log p if n = pm for some prime p and

an integer m, and zero otherwise. The two functions π(x) and J(x) are related by Möbius

inversion:

π(x) =
�

n≥1

µ(n)

n
J(x1/n

). (30)

Here, µ(n) is the Möbius function, equal to 1 (−1) if n is a product of an even (odd) number

of distinct primes, and equal to zero if it has a multiple prime factor. The above expression

is actually a finite sum, since for large enough n, x1/n < 2 and J = 0.

The main result of Riemann is a formula for J(x), expressed as an infinite sum over zeros

ρ of the ζ(z) function:

J(x) = Li(x)−
�

ρ

Li (xρ
) +

� ∞

x

dt

log t

1

t (t2 − 1)
− log 2, (31)

where Li(x) =
� x

0 dt/ log t is the log-integral function [33]. The above sum is real because the

ρ’s come in conjugate pairs. If there are no zeros on the line �(z) = 1, then the dominant

term is the first one in the above equation, J(x) ∼ Li(x), and this was used to prove the

prime number theorem by Hadamard and de la Vallée Poussin.

The function ψ(x) has the simpler form

ψ(x) =
�

n≤x

Λ(n) = x−
�

ρ

xρ

ρ
− log(2π)− 1

2
log

�
1− 1

x2

�
. (32)

In this formulation, the prime number theorem follows from the fact that the leading term

is ψ(x) ∼ x.

In Figure FIG. 5a we plot π(x) from equations (30) and (31), computed with the first 50

zeros in the approximation ρn =
1
2+i�yn given by (25). FIG. 5b shows the same plot with zeros

obtained from the numerical solution of equation (14). Although with the approximation �yn
the curve is trying to follow the steps in π(x), once again, one clearly sees the importance

of the arg ζ term.
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ρ =  a zero on the critical strip

Derived using clever real and complex analysis.
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Zeta and Random Matrix Theory

The distribution of zeros on the critical line appears random,  but 
is not completely random.

Dyson studied the properties of eigenvalues of random 
hamiltonians H.   Though H is random,  the spacing of its 
eigenvalues has predictable properties.  (“level repulsion”)

Montgomery studied the “pair correlation function”  of the zeros 
of zeta.   Dyson pointed out that was for the same as the GUE!  
(1973).   Verified numerically for high zeros by Odlyzko (1987)

 Gaussian Unitary Ensemble = exponential of random hamiltonian   
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define, as Riemann did, the function

ξ(z) ≡ 1
2z(z − 1)χ(z) = 1

2z(z − 1)π−z/2Γ(z/2)ζ(z) (6)

The function ξ(z) has the same zeros as ζ(z), and also satisfies the important identity

ξ(z) = ξ(1− z) (7)

ξ(z) is an entire function, which is to say it is single valued, analytic, and differen-

tiable everywhere in the complex plane.

Having made these introductory remarks, let us now summarize the main work

of this article. The ζ function is difficult to visualize because it is a map from the

complex plane into itself, and requires a four dimensional plot to display all of its

properties. In order to visualize the function, we construct a vector field %E from the

real and imaginary parts of ξ(z). By virtue of the Cauchy-Riemann equations this

field satisfies the conditions for a static electric field with no charged sources, namely

it has zero divergence and curl. We emphasize that our analysis is not based on
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a useful one, and guided our investigation. We will thus refer to %E as the “electric
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the simple transcendental equation, (19) or approximately by the explicit formula

eq. (22) in terms of the Lambert function W . This is the main analytic result of our
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II. ELECTROSTATIC ANALOGY AND VISUALIZATION OF THE RH.
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x + ∂2
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contours as the curves in the x, y plane corresponding to u or v equal to a constant,

respectively. The critical line is a v = 0 contour since ξ is real along it. As a

consequence of the Cauchy-Riemann equations, #∇u · #∇v = 0. Thus, where the u, v

contours intersect, they are necessarily perpendicular, and this is one aspect of their
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The key function of our work: 
the partition function of a photon:   

dependency. A Riemann zero occurs wherever the u = 0 and v = 0 contours intersect.

From the symmetry eq. (7) and ξ(z)∗ = ξ(z∗) it follows that

u(x, y) = u(1− x, y), v(x, y) = −v(1− x, y) (9)

This implies that the v contours do not cross the critical line except for v = 0. All

the u contours on the other hand are allowed to cross it by the above symmetry.

Away from the v = 0 points on the line "(z) = 1, since the u and v contours are

perpendicular, the u contours generally cross the critical line and span the whole

strip due to the symmetry eq. (9). The u contours that do not cross the critical

line must be in the vicinity of the v = 0 contours, again by the perpendicularity of

their intersections. Putting all these facts together, the u, v contours on the critical

strip have the properties shown in Figure 1. This demonstrates that Riemann zeros

indeed exist on the critical line. Hardy proved that there are infinitely many of such

zeros, and we will refer to this fact later.

Introduce the vector field

"E = Ex x̂+ Ey ŷ ≡ u(x, y) x̂− v(x, y) ŷ (10)

where x̂ and ŷ are unit vectors in the x and y directions. One purpose of this article

is to map out the properties of this field and describe their implications for the RH.

This field has zero divergence and curl as a consequence of the Cauchy-Riemann

equations

"∇ · "E = 0, "∇× "E = 0, (11)

which are defined everywhere since ξ is entire. Thus it satisfies the conditions of a

static electric field with no charged sources. We will continue to make this analogy

and refer to "E as the “electric field”. However we wish to emphasize that although

such analogies will be invoked in the sequel, "E is not a physically realized electric

field here, in that we do not need to specify what kind of charge distribution would
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It is “electrostatic”  by virtue of Cauchy-Riemann eqns: 
make the argument. By virtue of !∇ · !E = 0, Φ is also a solution of Laplace’s equation

∂z∂zΦ = 0 where z = z∗. The general solution is that Φ is the sum of a function of

z and another function of z. Since Φ must be real,

!E = −!∇Φ, Φ(x, y) = 1
2 (ϕ(z) + ϕ(z)) (12)

where ϕ(z) = ϕ(z)∗. Clearly Φ is not analytic, whereas ϕ is; it is useful to work with

Φ since we only have to deal with one real function. Comparing the definitions of !E

and ξ in terms of u, v, one finds u = −(∂zϕ+ ∂zϕ)/2 and v = −i(∂zϕ− ∂zϕ)/2. The

latter implies

ξ(z) = −
∂ϕ(z)

∂z
(13)

This equation can be integrated because ξ is entire. Using an integral representation

for ξ(z) derived in Riemann’s original paper, one can show that up to an irrelevant

additive constant,

ϕ(z) = −8

∫ ∞

1

d[t3/2g′(t)]
t−1/4

log t
sinh

[
1
2(z −

1
2) log t

]
(14)

where g′(t) is the t-derivative of the function g(t) = 1
2 (ϑ3(0, e−πt)− 1) =

∑∞
n=1 e

−n2πt, and ϑ3 is one of the four elliptic theta functions.

Let us now consider the Φ = constant contours in the critical strip. Using the

integral representation eq. (14), one finds the symmetry Φ(x, y) = −Φ(1−x, y). One

sees then that the Φ #= 0 contours do not cross the critical line, whereas the Φ = 0

contours can and do. Since ϕ is imaginary along the critical line, the latter is also a

Φ = 0 contour. Thus the Φ contours have the same structure as those for v shown

in Figure 1.

All Riemann zeros ρ necessarily occur at isolated points, which is a property of

entire functions. This is clear from the factorization formula ξ(z) = ξ(0)
∏

ρ(1−z/ρ),

conjectured by Riemann, and later proved by Hadamard. Where are these zeros
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The electric potential is:  

AL Int. J. Mod. Phys. A28 (2013) 



Riemann zeros occur where two electric potential contours intersect. 
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FIG. 7: Contour plot of the potential Φ in the vicinity of the first Riemann zero at z =

1/2+14.1347 i. The horizontal, vertical directions are the x, y directions where z = x+ iy.

The critical line and nearly horizontal line are Φ = 0 contours and they intersect at the

zero.

zeros h(y) has only one maximum, or minimum. For example, the sin(y) function is

obviously regular alternating. By the above argument, if f(y) is regular alternating,

then two Φ != 0 contours cannot intersect and there are no Riemann zeros off the

critical line.

To summarize this section, based on the symmetry eq. (7), and the existence

of the known infinity of Riemann zeros along the critical line, we have argued that

!E and Φ satisfy a regular repeating pattern all along the critical strip, and the

RH would follow from such a repeating pattern. In order to go further, one needs

to investigate the detailed properties of the function ξ, in particular it’s large y

asymptotic behavior, and establish its repetitive behavior, more specifically, that it

is a regular alternating function. This is the subject of the next section, which is

more constructive.

17

Near the first zero on the critical strip:

Φ = 0

Φ = 0

Φ != 0

ρn+1

ρn

x = 1
2 x = 1

FIG. 8: A sketch of the contour plot of the potential Φ in the vicinity of a hypothetical

Riemann zero off of the critical line. Such a zero occurs where the contours intersect. ρn

and ρn+1 are consecutive zeros on the line.

IV. ANALYSIS AND AN ASYMPTOTIC FORMULA FOR THE N-TH

RIEMANN ZERO.

As in the Introduction, define χ(z) = π−z/2Γ(z/2)ζ(z), which also has the sym-

metry χ(z) = χ(1 − z). It has a pole at z = 1, but this does not affect the

analysis of the zeros for large #(z) on the critical strip. Let us represent χ(z) as

χ(z) = π−z/2Γ(z/2)ei arg ζ(z)|ζ(z)|. Define χ̂(z) as χ(z) with the Stirling formula ap-

proximation to Γ(z/2). This approximation breaks the z → 1 − z symmetry, but

since we know it exists, we can easily restore it:

χ(z) ≈ 1
2 [χ̂(z) + χ̂(1− z)] (15)

18

The potential of hypothetical zero 
off the critical line:  



The Riemann Hypothesis is true if the electric potential along the 
line  Re(z) =1  is a “regular alternating function”,  i.e. only has one 
maximum or minimum between zeros on the critical line. 
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Regular alternating electric 
potential along the line Re(z)=1  
between first two zeros.  
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Transcendental equations for individual zeros.  

Everyone here knows one function with an 
infinite number of zeros along a line in the 
complex z-plane........

cos(z) =0
for z=(n+1/2)π 

Our result:  There are an infinite number of zeros of 
zeta along critical line in one-to-one correspondence 
with the zeros of cosine.  

The n-th zero satisfies a Transcendental Equation 
that depends on n. 
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The particular solution θ = θ�, cos(θ) = 0 gives an infinite number of zeros on the critica lline
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The particular solution θ = θ�, cos(θ) = 0 gives an infinite number of zeros on the critical line
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There exists an infinite number of zeros 
of zeta satisfying  

              θ(x=1/2, y) = (n+1/2) π



θ(x=1/2, y) = (n+1/2) π    is a transcendental equation for 
the ordinate yn  of the n-th Riemann zero:

In the limit of large y:  

(there is an exact version of this 
equation for y not assumed large)  

where

B(x, y) ≡ eiθ(x,y) + e−iθ�(x,y). (11)

The second equality in (10) follows from A = A�. Then, in the limit δ → 0+, a zero

corresponds to A = 0, B = 0 or both. They can simultaneously be zero since they are

not independent. If B = 0 then A = 0, since A ∝ |ζ(z)|. However, the converse is not

necessarily true.

Since there is more structure in B, let us consider B = 0. The general solution of this

equation is given by θ+θ� = (2n+1)π, which are a family of curves y(x). However, since χ(z)

is an analytic function, we know that the zeros must be isolated points rather than curves,

and this general solution must be restricted. Thus, let us choose the particular solution
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On the critical line, the first equation (12) is already satisfied. Now, in the limit δ → 0+,

the second equation implies θ =
�
n+ 1

2

�
π, for n = 0,±1,±2, . . . , hence

n =
y

2π
log

� y

2πe

�
− 5

8
+ lim

δ→0+

1

π
arg ζ

�
1
2 + iy + δ

�
. (13)

A closer inspection shows that the right hand side of (13) has a minimum in the interval

(−2,−1), thus n is bounded from below, i.e. n ≥ −1. Establishing the convention that

zeros are labeled by positive integers, ρn = 1
2 + iyn where n = 1, 2, . . . , we must replace

n → n − 2 in (13). Therefore, the imaginary parts of these zeros are determined from the

solution of the transcendental equation

yn
2π

log
� yn
2πe

�
+ lim

δ→0+

1

π
arg ζ

�
1
2 + δ + iyn

�
= n− 11

8
(n = 1, 2, . . . ). (14)

In short, we have shown that, asymptotically, there are an infinite number of zeros on the

critical line whose ordinates can be determined by solving (14) for yn.

Note that, by comparing with the counting function N(T ), the left hand side of (14) is

a monotonic increasing function of y, and the leading term is a smooth function. Possible

discontinuities can only come from 1
π arg ζ

�
1
2 + iy

�
, and in fact, it has a jump discontinuity

by one whenever y corresponds to a zero. However, if limδ→0+ arg ζ
�
1
2 + δ + iy

�
is well

defined, then the left hand side of equation (14) is well defined for any y and there is a

unique solution for every n. Under this assumption, the number of solutions of equation

7

The particular solution θ = θ�, cos(θ) = 0 gives an infinite number of zeros on the critical line

The n− th zero is of the form ρ =
1

2
+ iyn

3

Smooth part small fluctuating part

To a very good approximation, the n-th zero satisfies: 

(a) (b)

FIG. 2: (a) A plot of S(y) = 1
π arg ζ

�
1
2 + iy

�
as a function of y showing its rapid oscillation. The

jumps occur on a Riemann zero. (b) The function N0(T ) in (15), which is indistinguishable from

a manual counting of zeros.

III. APPROXIMATE SOLUTION IN TERMS OF THE LAMBERT FUNCTION

A. Main formula

Let us now show that if one neglects the arg ζ term, the equation (14) can be exactly

solved. First, let us introduce the Lambert W function [25], which is defined for any complex

number z through the equation

W (z)eW (z) = z. (23)

The multi-valued W function cannot be expressed in terms of other known elementary

functions. If we restrict attention to real-valued W (x) there are two branches. The principal

branch occurs when W (x) ≥ −1 and is denoted by W0, or simply W for short, and its

domain is x ≥ −1/e. The secondary branch, denoted by W−1, satisfies W−1(x) ≤ −1 for

−e−1 ≤ x < 0. Since we are interested in positive real-valued solutions of (14), we just need

the principal branch where W is single-valued.

Let us consider the leading order approximation of (14), or equivalently, its average since

�arg ζ
�
1
2 + iy

�
� = 0. Then we have the transcendental equation

�yn
2π

log

�
�yn
2πe

�
= n− 11

8
. (24)

Through the transformation �yn = 2π
�
n− 11

8

�
x−1
n , this equation can be written as xnexn =

e−1
�
n− 11

8

�
. Comparing with (23) its solution is given by xn = W

�
e−1

�
n− 11

8

��
, and thus

12

The particular solution θ = θ�, cos(θ) = 0 gives an infinite number of zeros on the critical line

The n− th zero is of the form ρ =
1

2
+ iyn

yn ≈ �yn

3



n �yn

1022 + 1 1.370919909931995308226770× 1021

1050 5.741532903784313725642221053588442131126693322343461× 1048

10100 2.80690383842894069903195445838256400084548030162846045192360059224930
922349073043060335653109252473234× 1098

10200 1.38579222214678934084546680546715919012340245153870708183286835248393
8909689796343076797639408172610028651791994879400728026863298840958091
288304951600695814960962282888090054696215023267048447330585768× 10198

TABLE I: Formula (25) can easily estimate very high Riemann zeros. The results are expected to

be correct up to the decimal point, i.e. to the number of digits in the integer part. The numbers

are shown with three digits beyond the integer part.

we obtain

�yn =
2π

�
n− 11

8

�

W
�
e−1

�
n− 11

8

�� . (25)

Although the inversion from (24) to (25) is rather simple, it is very convenient since it

is indeed an explicit formula depending only on n, and W is included in most numerical

packages. It gives an approximate solution for the ordinates of the Riemann zeros in closed

form. The values computed from (25) are much closer to the Riemann zeros than Gram

points, and one does not have to deal with violations of Gram’s law (see below).

B. Further remarks

Remark 7. The estimates given by (25) can be calculated to high accuracy for arbitrarily

large n, since W is a standard elementary function. Of course, the �yn are not as accurate

as the solutions yn including the arg ζ term, as we will see in section IV. Nevertheless,

it is indeed a good estimate, especially if one considers very high zeros, where traditional

methods have not previously estimated such high values. For instance, formula (25) can

easily estimate the zeros shown in TABLE I, and much higher if desirable. The numbers in

this table are accurate approximations to the n-th zero to the number of digits shown, which

is approximately the number of digits in the integer part. For instance, the approximation

to the 10100 zero is correct to 100 digits. With Mathematica we easily calculated the first

million digits of the 1010
6
zero.
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The solution is explicitly 
given in terms of an 
elementary function:   the 
Lambert W-function:

(a) (b)

FIG. 2: (a) A plot of S(y) = 1
π arg ζ

�
1
2 + iy

�
as a function of y showing its rapid oscillation. The

jumps occur on a Riemann zero. (b) The function N0(T ) in (15), which is indistinguishable from

a manual counting of zeros.

III. APPROXIMATE SOLUTION IN TERMS OF THE LAMBERT FUNCTION

A. Main formula

Let us now show that if one neglects the arg ζ term, the equation (14) can be exactly

solved. First, let us introduce the Lambert W function [25], which is defined for any complex

number z through the equation

W (z)eW (z) = z. (23)

The multi-valued W function cannot be expressed in terms of other known elementary

functions. If we restrict attention to real-valued W (x) there are two branches. The principal

branch occurs when W (x) ≥ −1 and is denoted by W0, or simply W for short, and its

domain is x ≥ −1/e. The secondary branch, denoted by W−1, satisfies W−1(x) ≤ −1 for

−e−1 ≤ x < 0. Since we are interested in positive real-valued solutions of (14), we just need

the principal branch where W is single-valued.

Let us consider the leading order approximation of (14), or equivalently, its average since

�arg ζ
�
1
2 + iy

�
� = 0. Then we have the transcendental equation

�yn
2π

log

�
�yn
2πe

�
= n− 11

8
. (24)

Through the transformation �yn = 2π
�
n− 11

8

�
x−1
n , this equation can be written as xnexn =

e−1
�
n− 11

8

�
. Comparing with (23) its solution is given by xn = W

�
e−1

�
n− 11

8

��
, and thus
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W is defined to satisfy: 

Lambert W  was first studied by Lambert in the 
1758.   Euler recognized its importance in 1779 in 
a paper on transcendental equations, and credited 
Lambert.   

It’s importance was only realized in the 1990’s, 
when it finally obtained the name
 the Lambert W-function.  



R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, 
“On the Lambert      Function”, Advances in Computational Mathematics, volume 5, 1996, pp. 329-359

www.orcca.on.ca/LambertW

Johann Heinrich Lambert

Leonhard Euler

Sir Edward Maitland Wright

A Fractal Related to 

The graph of                    for real
values of     and

Hippias of Elis

Johann Heinrich Lambert was born in Mulhouse on the 26th of August, 1728, and died in
Berlin on the 25th of September, 1777. His scientific interests were remarkably broad. The 
self-educated son of a tailor, he produced fundamentally important work in number theory,
geometry, statistics, astronomy, meteorology, hygrometry, pyrometry, optics, cosmology and
philosophy. Lambert was the first to prove the irrationality of . He worked on the parallel
postulate, and also introduced the modern notation for the hyperbolic functions.

In a paper entitled “Observationes Variae in Mathesin Puram”, published in 1758 in Acta
Helvetica, he gave a series solution of the trinomial equation, , for
His method was a precursor of the more general Lagrange inversion theorem. This solution
intrigued his contemporary, Euler, and led to the discovery of the Lambert       function. 

Lambert wrote Euler a cordial letter on the 18th of October, 1771, expressing his hope that
Euler would regain his sight after an operation; he explains in this letter how his trinomial
method extends to series reversion.

The Lambert       function is implicitly elementary. That is, it is implicitly defined by an equation
containing only elementary functions. The Lambert       function is not, itself, an elementary
function. It is also not a Liouvillian function, which means that it is not expressible as a finite
sequence of exponentiations, root extractions, or antidifferentiations (quadratures) of any
elementary function.

The Lambert       function has been applied to solve problems in the analysis of algorithms, 
the spread of disease, quantum physics, ideal diodes and transistors, black holes, the kinetics
of pigment regeneration in the human eye, dynamical systems containing delays, and in many
other areas.

Sir Edward Maitland Wright was born the 1st of January, 1906. He is
the co-author with G. H. Hardy of the classic book An Introduction to
the Theory of Numbers. His main contributions to the study of the 
Lambert       function were a systematic way of computing its complex
values, a series expansion of a related function about its branch points,
the application of       to enumeration problems, and the application of
to the study of the stability of the solutions of linear and nonlinear delay
differential equations. He was Professor of Mathematics, then Principal
and Vice-Chancellor, of Aberdeen University (1936-1976).

Equipotentials and electric field
lines at the edge of a capacitor
consisting of two charged thin
plates a distance       apart.

Images of circles and rays under the maps 
. Equivalently, images of

horizontal and vertical lines under the map
.

mathematical formulae on this poster are typeset in the Euler font, designed by Hermann Zapf to evoke
the flavour of excellent human handwriting.

Lambert’s series solution of his trinomial equation, which Euler rewrote as                                                   ,
led to the series solution of the transcendental equation                  . This was the earliest known occurrence 
of the series for the function now called the Lambert   function.

Leonhard Euler was born on the 15th of April, 1707, in Basel,
Switzerland, and died on the 18th of September, 1783, in St. Petersburg,
Russia. Half his papers were written in the last fourteen years of his
life, even though he had gone blind.

Euler was the greatest mathematician of the 18th century, and one of
the greatest of all time. His work on the calculus of variations has
been called “the most beautiful book ever written”, and Pierre Simon
de Laplace exhorted his students: “Lisez Euler, c’est notre maître â
tous”, advice that is still profitable today.

Many functions and concepts are named after him, including the
Euler totient function, Eulerian numbers, the Euler-Lagrange
equations, and the “eulerian” formulation of fluid mechanics. The

Each colour represents a cycle length in the iteration
, with               . A pixel at coordinate  
where is given the 

colour corresponding to the length of the attracting cycle.

A portion of the Riemann surface for , 
drawn by plotting a surface with height 

at coordinates and
colouring the surface with Re                       ; 
the apparent intersection on the line

is of surfaces 
with different colours and therefore not a 
true intersection.

Hippias of Elis lived, travelled and worked around 460 BC, and is
mentioned by Plato. The Quadratrix (or trisectrix) of Hippias is the first
curve ever named after its inventor. As drawn in the picture here, its
equation is                         . This curve can be used to square the circle
and to trisect the angle. Since these classical problems are unsolvable by
straightedge and compass, we therefore conclude that the construction
of the Quadratrix is impossible under that restriction. The Quadratrix is
also the image of the real axis under the map                   , and the
parts of the curve corresponding to the negative real axis delimit the
ranges of the branches of      . We have here coloured the ranges of the
different branches of       with different colours.
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With Lambert W one can accurately 
estimate arbitrarily high zeros,  even 
the 101000000 -th  to million digit 
accuracy. 

n �yn yn

1 14.52 14.134725142

10 50.23 49.773832478

102 235.99 236.524229666

103 1419.52 1419.422480946

104 9877.63 9877.782654006

105 74920.89 74920.827498994

106 600269.64 600269.677012445

107 4992381.11 4992381.014003180

108 42653549.77 42653549.760951554

109 371870204.05 371870203.837028053

1010 3293531632.26 3293531632.397136704

TABLE II: Numerical solutions of equation (14). All numbers shown are accurate up to the 9-th

decimal place, in comparison with [21, 27].

n yn

1 14.13472514173469379045725198356247

2 21.02203963877155499262847959389690

3 25.01085758014568876321379099256282

4 30.42487612585951321031189753058409

5 32.93506158773918969066236896407490

TABLE III: Numerical solutions to (14) for the lowest zeros. Although it was derived for high y,

it provides accurate numbers even for the lower zeros. This numbers are correct up to the decimal

place shown [21].

to 9 digits after the integer part.

Although the formula for yn was derived for large y, it is surprisingly accurate even for

the lower zeros, as shown in TABLE III. It is actually easier to solve numerically for low

zeros since arg ζ is better behaved. These numbers are correct up to the number of digits

shown, and the precision was improved simply by decreasing the error tolerance.

Riemann zeros have previously been calculated to high accuracy using sophisticated algo-

16

×  10996

2.7418985289770733523380199967281384304396404342236129703462008148794017483102
   288989728527567413645122744311921172826961083680270092169498827568635959416113
   429885386834142256620793027203450326850405406192401605278151278292126757823589
   021159380557496232240667437943583994705834760582066723674368091278444158666608
   455977853018177282026565267255273883601499075355217444189231104752684424593438
   624806198537729334547336147304637269663107947384735659921127394121662743671648
   211294886601858945279496294727955094639029288094054687941252225478426786182046
   523221704263095085135100819383398596169703987228336044024659350088753385324537
   829732202404696954235778305250096210562727012320495894109605623304319565563992
   484717380637709436240220452151111044939346281951249654746987540134824713871321
   328533373296657458895502274291514524646315414320664466625774466094199153901000
   163674331154397634011868264241305320165870441692798635788965590575893640872077
   63792090920744162661827244311481936682248189296258020149248439142

The 10999 -th zero to 1000 digits based on Lambert 
W:

The 10999 +1  -th zero to 1000 digits based on 
Lambert W:

2.7418985289770733523380199967281384304396404342236129703462008148794017483102
   288989728527567413645122744311921172826961083680270092169498827568635959416113
   429885386834142256620793027203450326850405406192401605278151278292126757823589
   021159380557496232240667437943583994705834760582066723674368091278444158666608
   455977853018177282026565267255273883601499075355217444189231104752684424593438
   624806198537729334547336147304637269663107947384735659921127394121662743671648
   211294886601858945279496294727955094639029288094054687941252225478426786182046
   523221704263095085135100819383398596169703987228336044024659350088753385324537
   829732202404696954235778305250096210562727012320495894109605623304319565563992
   484717380637709436240220452151111044939346281951249654746987540134824713871321
   328533373296657458895502274291514524646315414320664466625774466094199153901000
   163674331154397634011868264241305320165870441692798635788965590575893640872077
   63792090920744162661827244311481936682248189296258020149248439145

×  10996

Differ only in 
last digit shown

(mathematica)  
(only 1080 atoms in universe)



Solutions of the asymptotic transcendental equation 
are accurate enough to reveal the GUE statistics: 

105 zeros around the
 billion-th zero: 

curve is the GUE 
prediction

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

M = 109 − 105, N = 109

(b)

FIG. 4: (a) The solid line represents the RHS of (28) and the dots represent its LHS, computed from

the numerical solutions of equation (14). The parameters are β = α + 0.05, α = [0, 0.05, . . . , 3]

and the x-axis is given by x =
1
2 (α+ β). We use the first 10

5
zeros. (b) The same parameters but

using zeros in the middle of the critical line, i.e. M = 10
9 − 10

5
and N = 10

9
.

n yn

10
5 − 5 74917.719415828

10
5 − 4 74918.370580227

10
5 − 3 74918.691433454

10
5 − 2 74919.075161121

10
5 − 1 74920.259793259

10
5

74920.827498994

n yn

10
9 − 5 371870202.244870424

10
9 − 4 371870202.673284411

10
9 − 3 371870203.177729726

10
9 − 2 371870203.274345875

10
9 − 1 371870203.802552402

10
9

371870203.837028146

TABLE V: Last numerical solutions to (14) around n = 10
5
and n = 10

9
. In the first table the

solutions are accurate up to the 8-th decimal place, while in the second table up to the 6-th decimal

place [21, 27].

statistics. In fact, FIG. 4a is identical to the one in [30]. The last zeros in these ranges are

shown in TABLE V.

VI. PRIME NUMBER COUNTING FUNCTION

In this section we explore whether our approximations to the Riemann zeros are accurate

enough to reconstruct the prime number counting function. As usual, let π(x) denote the

number of primes less than x. Riemann obtained an explicit expression for π(x) in terms of

19



Solving the exact version of the transcendental 
equation gives zeros to any desired accuracy. 

n yn

1 14.1347251417346937904572519835624702707842571156992431756855

2 21.0220396387715549926284795938969027773343405249027817546295

3 25.0108575801456887632137909925628218186595496725579966724965

4 30.4248761258595132103118975305840913201815600237154401809621

5 32.9350615877391896906623689640749034888127156035170390092800

TABLE VI: The first few numerical solutions to (20), accurate to 60 digits (58 decimals). These

solutions were obtained using the root finder function in Mathematica.

It is known that the first zero where Gram’s law fails is for n = 126. Applying the same

method, like for any other n, the solution of (20) starting with the approximation (25) does

not present any difficulty. We easily found the following number:

279.229250927745189228409880451955359283492637405561293594727 (n = 126)

Just to illustrate, and to convince the reader, how the solutions of (20) can be made arbi-

trarily precise, we compute the zero n = 1000 accurate up to 500 decimal places, also using

the same simple approach [35]:

1419.42248094599568646598903807991681923210060106416601630469081468460

8676417593010417911343291179209987480984232260560118741397447952650637

0672508342889831518454476882525931159442394251954846877081639462563323

8145779152841855934315118793290577642799801273605240944611733704181896

2494747459675690479839876840142804973590017354741319116293486589463954

5423132081056990198071939175430299848814901931936718231264204272763589

1148784832999646735616085843651542517182417956641495352443292193649483

857772253460088

Substituting precise Riemann zeros calculated by other means [21] into (20) one can check

that the equation is identically satisfied. These results corroborate that (20) is an exact

equation for the Riemann zeros, which was derived on the critical line.

VIII. FINAL REMARKS

Let us summarize our main results and arguments. Throughout this paper we did not

assume the Riemann hypothesis. The main outcome was the demonstration that there are

22

The 1000-th zero to 500 digits: 

..........with very simple Mathematica commands.



How to prove the Riemann Hypothesis 

where

B(x, y) ≡ eiθ(x,y) + e−iθ�(x,y). (11)

The second equality in (10) follows from A = A�. Then, in the limit δ → 0+, a zero

corresponds to A = 0, B = 0 or both. They can simultaneously be zero since they are

not independent. If B = 0 then A = 0, since A ∝ |ζ(z)|. However, the converse is not

necessarily true.

Since there is more structure in B, let us consider B = 0. The general solution of this

equation is given by θ+θ� = (2n+1)π, which are a family of curves y(x). However, since χ(z)

is an analytic function, we know that the zeros must be isolated points rather than curves,

and this general solution must be restricted. Thus, let us choose the particular solution

θ = θ�, lim
δ→0+

cos θ = 0. (12)

On the critical line, the first equation (12) is already satisfied. Now, in the limit δ → 0+,

the second equation implies θ =
�
n+ 1

2

�
π, for n = 0,±1,±2, . . . , hence

n =
y

2π
log

� y

2πe

�
− 5

8
+ lim

δ→0+

1

π
arg ζ

�
1
2 + iy + δ

�
. (13)

A closer inspection shows that the right hand side of (13) has a minimum in the interval

(−2,−1), thus n is bounded from below, i.e. n ≥ −1. Establishing the convention that

zeros are labeled by positive integers, ρn = 1
2 + iyn where n = 1, 2, . . . , we must replace

n → n − 2 in (13). Therefore, the imaginary parts of these zeros are determined from the

solution of the transcendental equation

yn
2π

log
� yn
2πe

�
+ lim

δ→0+

1

π
arg ζ

�
1
2 + δ + iyn

�
= n− 11

8
(n = 1, 2, . . . ). (14)

In short, we have shown that, asymptotically, there are an infinite number of zeros on the

critical line whose ordinates can be determined by solving (14) for yn.

Note that, by comparing with the counting function N(T ), the left hand side of (14) is

a monotonic increasing function of y, and the leading term is a smooth function. Possible

discontinuities can only come from 1
π arg ζ

�
1
2 + iy

�
, and in fact, it has a jump discontinuity

by one whenever y corresponds to a zero. However, if limδ→0+ arg ζ
�
1
2 + δ + iy

�
is well

defined, then the left hand side of equation (14) is well defined for any y and there is a

unique solution for every n. Under this assumption, the number of solutions of equation

7

The particular solution θ = θ�, cos(θ) = 0 gives an infinite number of zeros on the critical line

The n− th zero is of the form ρ =
1

2
+ iyn

3

Recall our 
main result:

If there is a unique solution to this equation for every n,  since they are enumerated
by n, we can count how many zeros are on the critical line up to a height y=T.

N0(T) =  number of zeros on the line with ordinate y<T.   The above formula 
               implies:  (14), up to height T , is given by

N0(T ) =
T

2π
log

�
T

2πe

�
+

7

8
+

1

π
arg ζ

�
1
2 + iT

�
+O

�
T

−1
�
. (15)

This is so because the zeros are already numbered in (14), but the left hand side jumps by

one at each zero, with values −1/2 to the left and +1/2 to the right of the zero. Thus we

can replace n → N0 + 1/2 and yn → T , such that the jumps correspond to integer values.

In this way T will not correspond to the ordinate of a zero and δ can be eliminated.

Let us now recall the Riemann-von Mangoldt formula (1) for the number of zeros on the

critical strip. It is the same as the number of zeros on the critical line that we have just

found (15), i.e. N0(T ) = N(T ). This means that our particular solution (12), leading to

equation (14), already saturates the counting formula on the whole strip and there are no

additional zeros from A = 0 in (10) nor from the general solution θ + θ� = (2n + 1)π. This

strongly suggests that (14) describes all the non-trivial zeros, which are all on the critical

line.

B. Exact equation

Let us now reproduce the same analysis discussed previously but without an asymptotic

expansion. The exact versions of (6) and (7) are

A(x, y) = π−x/2|Γ
�
1
2(x+ iy)

�
||ζ(x+ iy)|, (16)

θ(x, y) = argΓ
�
1
2(x+ iy)

�
− y

2
log π + arg ζ(x+ iy), (17)

where again χ(z) = Aeiθ and χ(1 − z) = A�e−iθ, with A�(x, y) = A(1 − x, y) and θ�(x, y) =

θ(1 − x, y). The zeros on the critical line correspond to the particular solution θ = θ� and

limδ→0+ cos θ = 0. Thus limδ→0+ θ =
�
n+ 1

2

�
π and replacing n → n−2, the imaginary parts

of these zeros must satisfy the exact equation

argΓ
�
1
4 +

i
2yn

�
− yn log

√
π + lim

δ→0+
arg ζ

�
1
2 + iyn

�
=

�
n− 3

2

�
π. (18)

The Riemann-Siegel ϑ function is defined by

ϑ(t) ≡ argΓ
�
1
4 +

i
2t
�
− t log

√
π, (19)

where the argument is defined such that this function is continuous and ϑ(0) = 0. Therefore,

there are infinite zeros in the form ρn = 1
2 + iyn, where n = 1, 2, . . . , whose imaginary parts

8

Now:     N(T) = number of zeros on the entire critical strip has been 
known for over 100 years by performing a certain contour 
integral (argument principle) around the strip  (Riemann, 
Backlund).

our N0(T) = the known N(T)

Thus:  all zeros are on the line.



!e End




