SUPERGROUPS FOR DISORDERED DIRAC FERMIONS

ANDRE LECLAIR CORNELL UNIVERSITY

Newton Institute for Mathematical Sciences

York University December 2007

Outline

Outline

- Introduction
- Classification of universality
- Supersymmetric disorder averaging
- $g l(1 \mid 1)$ supercurrent algebra as a critical point from super spin charge separation
- solution of the the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ level k model.
- Critical points and logarithmic perturbations
- multi-fractal and localization length exponents
- Conclusions

Outline

- Introduction
- Classification of universality
- Supersymmetric disorder averaging
- $g l(1 \mid 1)$ supercurrent algebra as a critical point from super spin charge separation
- solution of the the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ level k model.
- Critical points and logarithmic perturbations
- multi-fractal and localization length exponents
- Conclusions
based on 0710.2906[hep-th] and 0710.3778[cond-math] (October)

Motivations from Mathematics and Physics

Motivations from Mathematics and Physics

Motivations from Mathematics and Physics

- Anderson transitions in $2+1$ dimensions
- physics of metal-insulator transitions
- the challenge: computing quenched disorder averages.
- important physical examples: Quantum Hall Transition, Graphene
- new universality classes beyond percolation

- Supergroups in Mathematical Physics

- Anderson transitions: supergroups arise in Efetov's supersymmetric method of computing quenched disorder averages.
- sigma models on Lie supergroups arise in string theory on AdS spaces, e.g. psl(2|2) sigma models.
- Spin chains built on supergroups arise in the integrability approach to $\mathrm{N}=4$ susy Yang-Mills.
- various problems in statistical mechanics: percolation, selfavoiding walks, polymers,

- Supergroups in Mathematical Physics

- Anderson transitions: supergroups arise in Efetov's supersymmetric method of computing quenched disorder averages.
- sigma models on Lie supergroups arise in string theory on AdS spaces, e.g. psl(2/2) sigma models.

Berkovits, Vafa, Witten 1999

- Spin chains built on supergroups arise in the integrability approach to $\mathrm{N}=4$ susy Yang-Mills.

Beisert and Staudacher 2005

- various problems in statistical mechanics: percolation, selfavoiding walks, polymers,

Anderson localization and the Quantum Hall Transition

Anderson localization and the Quantum Hall Transition

Consider electrons moving in a random potential:

Anderson localization and the Quantum Hall Transition

Consider electrons moving in a random potential:

Quantum Hall Effect

Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential

Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential

Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential

Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential

Quantum Hall Effect

* free electrons in a magnetic field and random impurity potential

* important open problem: critical properties of the transition, exponents, etc. E.g:

$$
\xi_{c} \sim\left(E-E_{c}\right)^{\nu} \quad, \quad \Delta B \propto T^{1 / \nu}, \quad \nu \approx 7 / 3
$$

Universality Classes

Why Dirac fermions? Nearly all interesting cases have i-st order actions.
Most general Dirac hamiltonian in 2d:

$$
H=\left(\begin{array}{cc}
V_{+}+V_{-} & -i \partial_{\bar{z}}+A_{\bar{z}} \\
-i \partial_{z}+A_{z} & V_{+}-V_{-}
\end{array}\right)
$$

$$
\mathrm{V}, \mathrm{~A}=\mathrm{V}(\mathrm{x}), \mathrm{A}(\mathrm{x})=\text { random potentials }
$$

Universality Classes

Why Dirac fermions? Nearly all interesting cases have I-st order actions.
Most general Dirac hamiltonian in 2d:

$$
H=\left(\begin{array}{cc}
V_{+}+V_{-} & -i \partial_{\bar{z}}+A_{\bar{z}} \\
-i \partial_{z}+A_{z} & V_{+}-V_{-}
\end{array}\right)
$$

$$
\mathrm{V}, \mathrm{~A}=\mathrm{V}(\mathrm{x}), \mathrm{A}(\mathrm{x})=\text { random potentials }
$$

Classification according to discrete symmetries:

- Chirality:

$$
H=-P H P^{-1}, \quad P^{2}=1
$$

- Particle-hole:

$$
H=-C H^{T} C^{-1}, \quad C^{T}= \pm C
$$

- Time-reversal:

$$
H=K H^{*} K^{-1}, \quad K^{T}= \pm K
$$

Universality Classes

*with D. Bernard, J.Phys. A35 (2002)
Why Dirac fermions? Nearly all interesting cases have I-st order actions.
Most general Dirac hamiltonian in 2d:

$$
H=\left(\begin{array}{cc}
V_{+}+V_{-} & -i \partial_{\bar{z}}+A_{\bar{z}} \\
-i \partial_{z}+A_{z} & V_{+}-V_{-}
\end{array}\right)
$$

$$
\mathrm{V}, \mathrm{~A}=\mathrm{V}(\mathrm{x}), \mathrm{A}(\mathrm{x})=\text { random potentials }
$$

Classification according to discrete symmetries:

- Chirality:

$$
H=-P H P^{-1}, \quad P^{2}=1
$$

- Particle-hole:

$$
H=-C H^{T} C^{-1}, \quad C^{T}= \pm C
$$

- Time-reversal:

$$
H=K H^{*} K^{-1}, \quad K^{T}= \pm K
$$

Result of the classification:

Result of the classification:

- I3 universality classes

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: io Altland-Zirnbauer classes

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: io Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
- a new universality class (not percolation)

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: io Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
- a new universality class (not percolation)
- Spin quantum Hall transition: class C
- mapped to percolation by Gruzberg, Ludwig, Read (1999)
- $v=4 / 3$

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: io Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
- a new universality class (not percolation)
- Spin quantum Hall transition: class C
- mapped to percolation by Gruzberg, Ludwig, Read (1999)
- $v=4 / 3$
- chiral Gade-Wegner class (hopping on bipartite lattices)

Result of the classification:

- 13 universality classes
- contains: 3 Wigner-Dyson classes
- contains: io Altland-Zirnbauer classes
- Chalker-Coddington (1988) network model: Dirac fermion in class GUE
- a new universality class (not percolation)
- Spin quantum Hall transition: class C
- mapped to percolation by Gruzberg, Ludwig, Read (1999)
- $v=4 / 3$
- chiral Gade-Wegner class (hopping on bipartite lattices)

[^0]
Supersymmetric Disorder Averaging

Consider a free hamiltonian in a random potential $\mathrm{V}(\mathrm{x})$:
e.g. Schrodinger for simplicity:

$$
H=-\frac{\vec{\nabla}^{2}}{2 m}+V(x)
$$

We are interested in disorder averaged Green functions:

$$
\overline{<\psi(x) \psi^{\dagger}\left(x^{\prime}\right)>}=\int D V P[V]<\psi(x) \psi^{\dagger}\left(x^{\prime}\right)>_{V}
$$

The problem: properly normalize the Green function at fixed V by $Z(V)$:
The trick: represent Z with bosonic ghosts:

$$
\frac{1}{Z(V)}=\int D \beta e^{-S(\psi \rightarrow \beta, V)}
$$

We can now perform the functional integral over the random potential V:

$$
\overline{\left\langle\psi(x) \psi^{\dagger}(y)\right\rangle}=\int D \psi D \beta e^{-S_{\text {eff }}} \psi(x) \psi^{\dagger}(y)
$$

Seff is an interacting quantum field theory of fermions and ghosts.

Where are the critical points?

Where are the critical points?

AL and Bernard 2002

Where are the critical points?

- There are no perturbative fixed points at r -loop and higher.

AL and Bernard 2002

- due to marginality of the interactions

Where are the critical points?

- There are no perturbative fixed points at r -loop and higher.

AL and Bernard 2002

- due to marginality of the interactions
- Other approaches:
- Replica sigma models (Pruisken 1984)
- Supergroup sigma models (Zirnbauer 1999)

Where are the critical points?

- There are no perturbative fixed points at r -loop and higher.

AL and Bernard 2002

- due to marginality of the interactions
- Other approaches:
- Replica sigma models (Pruisken 1984)
- Supergroup sigma models (Zirnbauer 1999)
- OUR NEW APPROACH: Resolve the RG flow in 2 stages; use super spin charge separation; new results for gl (1|1) current algebra; explicit form of logarithmic operators in terms of symplectic fermions.

Supergroup symmetries in the N-copy theory

For any realization of the disorder the action has a $g l(N \mid N)$ symmetry.
The important super subgroup symmetry which commutes with permutations of the copies is:

$$
g l(1 \mid 1)_{N}
$$

Supergroup symmetries in the N-copy theory

Introduce N -copies of the theory in order to compute multiple moments:
fields:

$$
\Psi_{ \pm}^{\alpha}=\left(\psi_{ \pm}^{\alpha}, \beta_{ \pm}^{\alpha}\right), \quad \alpha=1, \ldots, N
$$

$$
=\int d x \Psi^{*} H \Psi
$$

For any realization of the disorder the action has a $g l(N \mid N)$ symmetry.
The important super subgroup symmetry which commutes with permutations of the copies is:

$$
g l(1 \mid 1)_{N}
$$

Supergroup symmetries in the N-copy theory

Introduce N -copies of the theory in order to compute multiple moments:
fields:

$$
\Psi_{ \pm}^{\alpha}=\left(\psi_{ \pm}^{\alpha}, \beta_{ \pm}^{\alpha}\right), \quad \alpha=1, . ., N
$$

The action at fixed realization of disorder:

$$
\begin{aligned}
S_{\text {susy }}=\int \frac{d^{2} x}{2 \pi}\left[\bar{\Psi}_{-}\left(\partial_{z}-i A_{z}(x)\right) \bar{\Psi}_{+}\right. & +\Psi_{-}\left(\partial_{\bar{z}}-i A_{\bar{z}}(x)\right) \Psi_{+}-i V(x)\left(\bar{\Psi}_{-} \Psi_{+}+\Psi_{-} \bar{\Psi}_{+}\right) \\
& \left.-i M(x)\left(\bar{\Psi}_{-} \Psi_{+}-\Psi_{-} \bar{\Psi}_{+}\right)\right]
\end{aligned}
$$

$=\int d x \Psi^{*} H \Psi$
For any realization of the disorder the action has a $g l(N \mid N)$ symmetry.
The important super subgroup symmetry which commutes with permutations of the copies is:

$$
g l(1 \mid 1)_{N}
$$

The $g l(1 \mid 1)_{N}$ affine Lie algebra symmetry is generated by the chiral currents:

$$
H=\sum_{\alpha} \psi_{+}^{\alpha} \psi_{-}^{\alpha}, \quad J=\sum_{\alpha} \beta_{+}^{\alpha} \beta_{-}^{\alpha}, \quad S_{ \pm}= \pm \sum_{\alpha} \psi_{ \pm}^{\alpha} \beta_{\mp}^{\alpha}
$$

which satisfy the operator product expansion: $\quad(\mathrm{k}=\mathrm{N}=$ level $)$

$$
\begin{aligned}
H(z) H(0) & \sim \frac{k}{z^{2}}, \quad J(z) J(0) \sim-\frac{k}{z^{2}} \\
H(z) S_{ \pm}(0) & \sim J(z) S_{ \pm}(0) \sim \pm \frac{1}{z} S_{ \pm} \\
S_{+}(z) S_{-}(0) & \sim \frac{k}{z^{2}}+\frac{1}{z}(H-J)
\end{aligned}
$$

Additional symmetries that commute with the above: $\mathrm{su}(\mathrm{N})$ at level $\mathrm{k}=\mathrm{o}$ currents:

$$
L_{\psi}^{a}=\psi_{-}^{\alpha} t_{\alpha \alpha^{\prime}}^{a} \psi_{+}^{\alpha^{\prime}}, \quad L_{\beta}^{a}=\beta_{-}^{\alpha} t_{\alpha \alpha^{\prime}}^{a} \beta_{+}^{\alpha^{\prime}}, \quad L^{a}=L_{\psi}^{a}+L_{\beta}^{a}
$$

Important symmetry:

$$
g l(1 \mid 1)_{N} \oplus s u(N)_{0}
$$

Critical points from Super Spin-Charge Separation

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$
T_{\mathrm{free}}^{\mathrm{N}-\mathrm{copy}}=-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha}+\beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}\right)=T_{g l(1 \mid 1)_{k=N}}+T_{s u(N)_{0}}
$$

Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$
T_{\text {free }}^{\mathrm{N}-\text { copy }}=-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha}+\beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}\right)=T_{g l(1 \mid 1)_{k=N}}+T_{s u(N)_{0}}
$$

Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$
T_{\text {free }}^{\mathrm{N}-\text { copy }}=-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha}+\beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}\right)=T_{g l(1 \mid 1)_{k=N}}+T_{\text {su }(N)_{0}}
$$

* In the first stage of the RG flow, carry out the flow for the couplings in $S_{\text {eff }}$ corresponding to these two sets of degrees of freedom:

$$
S=S_{\mathrm{cft}}+\int \frac{d^{2} x}{2 \pi}\left(g_{A} J_{A} \cdot \bar{J}_{A}+g_{B} J_{B} \cdot \bar{J}_{B}\right)
$$

where $\mathrm{J}_{\mathrm{A}}=\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ currents, $\mathrm{J}_{\mathrm{B}}=\mathrm{su}(\mathrm{N})$ currents. The I -loop beta functions are:

$$
\frac{d g_{A}}{d \ell}=-g_{A}^{2}, \quad \frac{d g_{B}}{d \ell}=+g_{B}^{2}
$$

Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$
T_{\text {free }}^{\mathrm{N}-\text { copy }}=-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha}+\beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}\right)=T_{g l(1 \mid 1)_{k=N}}+T_{\text {su }(N)_{0}}
$$

* In the first stage of the RG flow, carry out the flow for the couplings in $S_{\text {eff }}$ corresponding to these two sets of degrees of freedom:

$$
S=S_{\mathrm{cft}}+\int \frac{d^{2} x}{2 \pi}\left(g_{A} J_{A} \cdot \bar{J}_{A}+g_{B} J_{B} \cdot \bar{J}_{B}\right)
$$

where $\mathrm{J}_{\mathrm{A}}=\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ currents, $\mathrm{J}_{\mathrm{B}}=\mathrm{su}(\mathrm{N})$ currents. The I -loop beta functions are:

$$
\frac{d g_{A}}{d \ell}=-g_{A}^{2}, \quad \frac{d g_{B}}{d \ell}=+g_{B}^{2}
$$

Since $g_{A}\left(g_{B}\right)$ is marginally irrelevant (relevant) only the su(N) degrees of freedom are gapped out in the flow. First stage: flow to $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{N}}$

Critical points from Super Spin-Charge Separation

Strategy for resolving the renormalization group (RG) flow: Based on the idea that the RG flow to low energies decouples massive degrees of freedom.

* First separate the theory into two commuting sets of degrees of freedom. This involves a remarkable identity for the Sugawara stress-tensors:

$$
T_{\text {free }}^{\mathrm{N}-\text { copy }}=-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\psi_{-}^{\alpha} \partial_{z} \psi_{+}^{\alpha}+\beta_{-}^{\alpha} \partial_{z} \beta_{+}^{\alpha}\right)=T_{g l(1 \mid 1)_{k=N}}+T_{\text {su }(N)_{0}}
$$

* In the first stage of the RG flow, carry out the flow for the couplings in $\mathrm{S}_{\text {eff }}$ corresponding to these two sets of degrees of freedom:

$$
S=S_{\mathrm{cft}}+\int \frac{d^{2} x}{2 \pi}\left(g_{A} J_{A} \cdot \bar{J}_{A}+g_{B} J_{B} \cdot \bar{J}_{B}\right)
$$

where $\mathrm{J}_{\mathrm{A}}=\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ currents, $\mathrm{J}_{\mathrm{B}}=\mathrm{su}(\mathrm{N})$ currents. The I -loop beta functions are:

$$
\frac{d g_{A}}{d \ell}=-g_{A}^{2}, \quad \frac{d g_{B}}{d \ell}=+g_{B}^{2}
$$

Since $g_{A}\left(g_{B}\right)$ is marginally irrelevant (relevant) only the $s u(N)$ degrees of freedom are gapped out in the flow. First stage: flow to $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{N}}$

* Introduce additional forms of disorder as relevant perturbations of $g l\left(\mathrm{I} \mid \mathrm{I}_{\mathrm{N}}\right.$

Solution of the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{k}}$ theory

AL 0710.2906 [hep-th], builds on Schomerus and Saleur 2006

Solution of the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{k}}$ theory

AL 0710.2906 [hep-th], builds on Schomerus and Saleur 2006

Free field representation: two scalar field and a symplectic fermion:

Action:

$$
\begin{gathered}
S=\frac{1}{8 \pi} \int d^{2} x \sum_{a, b=1}^{2}\left(\eta_{a b} \partial_{\mu} \phi^{a} \partial_{\mu} \phi^{b}+\epsilon_{a b} \partial_{\mu} \chi^{a} \partial_{\mu} \chi^{b}\right) \\
\eta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \epsilon=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{gathered}
$$

Representation of the current algebra:

$$
\begin{aligned}
H & =i \sqrt{k} \partial_{z} \phi^{1}, \quad J=i \sqrt{k} \partial_{z} \phi^{2} \\
S_{+} & =\sqrt{k} \partial_{z} \chi^{1} \mathrm{e}^{i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}}, \quad S_{-}=-\sqrt{k} \partial_{z} \chi^{2} \mathrm{e}^{-i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}}
\end{aligned}
$$

Solution of the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{k}}$ theory

AL 0710.2906 [hep-th], builds on Schomerus and Saleur 2006

Free field representation: two scalar field and a symplectic fermion:

Action:

$$
\begin{gathered}
S=\frac{1}{8 \pi} \int d^{2} x \sum_{a, b=1}^{2}\left(\eta_{a b} \partial_{\mu} \phi^{a} \partial_{\mu} \phi^{b}+\epsilon_{a b} \partial_{\mu} \chi^{a} \partial_{\mu} \chi^{b}\right) \\
\eta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \epsilon=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{gathered}
$$

Representation of the current algebra:

$$
\begin{aligned}
H & =i \sqrt{k} \partial_{z} \phi^{1}, \quad J=i \sqrt{k} \partial_{z} \phi^{2} \\
S_{+} & =\sqrt{k} \partial_{z} \chi^{1} \mathrm{e}^{i\left(\phi^{2}-\phi^{2}\right) / \sqrt{k}}, \quad S_{-}=-\sqrt{k} \partial_{z} \chi^{2} \mathrm{e}^{-i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}}
\end{aligned}
$$

Twist fields:

$$
\begin{aligned}
& \chi^{1}\left(\mathrm{e}^{2 \pi i} z\right) \mu_{\lambda}(0)=\mathrm{e}^{-2 \pi i \lambda} \chi^{1}(z) \mu_{\lambda}(0) \\
& \chi^{2}\left(\mathrm{e}^{2 \pi i} z\right) \mu_{\lambda}(0)=\mathrm{e}^{2 \pi i \lambda} \chi^{2}(z) \mu_{\lambda}(0)
\end{aligned}
$$

$$
\Delta\left(\mu_{\lambda}\right)=\frac{\lambda(\lambda-1)}{2} \equiv \Delta_{\lambda}^{(\chi)}
$$

VERTEX OPERATORS: fields transforming in finite dimensional reps of $\mathrm{g}(\mathrm{IIII})_{k}$

The corresponding vertex operator:

$$
V_{\langle h, j\rangle}=(h-j)^{1 / 4}\binom{-\mu_{\lambda} \mathrm{e}^{i\left(h \phi^{1}-j \phi^{2}\right) / \sqrt{k}}}{\sigma_{\lambda}^{2} \mathrm{e}^{i\left((h-1) \phi^{1}-(j-1) \phi^{2}\right) / \sqrt{k}}}, \quad \lambda=\frac{h-j}{k}
$$

Conformal scaling dimension:

$$
\Delta_{\langle h, j\rangle}=\frac{(h-j)^{2}}{2 k^{2}}+\frac{(h-j)(h+j-1)}{2 k}
$$

Closed operator algebra:

$$
-\mathrm{k}<\mathrm{h}-\mathrm{j}<\mathrm{k}
$$

$$
\mathrm{h}, \mathrm{j}, \mathrm{k}=\text { integers }
$$

VERTEX OPERATORS: fields transforming in finite dimensional reps of $\mathrm{gl}(\mathrm{II} \mid \mathrm{x})_{\mathrm{k}}$

2-dimensional reps $\langle\mathrm{h}, \mathrm{j}\rangle$:

$$
\begin{align*}
& H=\left(\begin{array}{cc}
h & 0 \\
0 & h-1
\end{array}\right), \quad J=\left(\begin{array}{cc}
j & 0 \\
0 & j-1
\end{array}\right) \\
& S_{+}=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right), \quad S_{-}=\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right) \tag{bc=h-j}
\end{align*}
$$

The corresponding vertex operator:

$$
V_{\langle h, j\rangle}=(h-j)^{1 / 4}\binom{-\mu_{\lambda} \mathrm{e}^{i\left(h \phi^{1}-j \phi^{2}\right) / \sqrt{k}}}{\sigma_{\lambda}^{2} \mathrm{e}^{i\left((h-1) \phi^{1}-(j-1) \phi^{2}\right) / \sqrt{k}}}, \quad \lambda=\frac{h-j}{k}
$$

Conformal scaling dimension:

$$
\Delta_{\langle h, j\rangle}=\frac{(h-j)^{2}}{2 k^{2}}+\frac{(h-j)(h+j-1)}{2 k}
$$

Closed operator algebra:

$$
-\mathrm{k}<\mathrm{h}-\mathrm{j}<\mathrm{k}
$$

$$
\mathrm{h}, \mathrm{j}, \mathrm{k}=\text { integers }
$$

Logarithmic vertex operators for indecomposable representations.

$4^{- \text {dimensional indecomposable reps }\langle\boldsymbol{o}\rangle_{4}: \quad\langle 1,0\rangle \otimes\langle 0,1\rangle=\langle 0\rangle_{(4)}, ~}$

Corresponding vertex operator $(\Delta=0)$:

$$
V_{\langle 0\rangle_{(4)}}=\left(\begin{array}{c}
\chi^{1} \mathrm{e}^{i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}} \\
\sqrt{k} \\
\chi^{1} \chi^{2} / \sqrt{k} \\
\chi^{2} \mathrm{e}^{-i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}}
\end{array}\right)
$$

Logarithmic property: Virasoro zero mode is not diagonal (fordan block form)

$$
L_{0}=-\frac{1}{k}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(similar properties found for osp(2/2) by Maassarani and Serban 1997)

Logarithmic vertex operators for indecomposable representations.

Corresponding vertex operator $(\Delta=0)$:

$$
V_{\langle 0\rangle_{(4)}}=\left(\begin{array}{c}
\chi^{1} \mathrm{e}^{i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}} \\
\sqrt{k} \\
\chi^{1} \chi^{2} / \sqrt{k} \\
\chi^{2} \mathrm{e}^{-i\left(\phi^{1}-\phi^{2}\right) / \sqrt{k}}
\end{array}\right)
$$

Logarithmic property: Virasoro zero mode is not diagonal (Fordan block form)
(due to the \log pair ($\mathrm{I}, \chi^{1} \chi^{2}$))

$$
L_{0}=-\frac{1}{k}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(similar properties found for $\operatorname{osp}(2 / 2)$ by Maassarani and Serban 1997)

Logarithmic perturbations

Quantum numbers:

* under the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I}) \mathrm{x}$ su(N$)$ symmetries:

$$
\psi_{ \pm}, \beta_{ \pm} \quad \longleftrightarrow \quad(\langle 1,0\rangle \oplus\langle 0,1\rangle) \otimes[\mathrm{vec}]
$$

* currents= bilinears in these fields. Examining the quantum numbers: For $\mathrm{N}<2$ the most relevant operator corresponds to $\langle\mathrm{O}\rangle_{(4)}$. Leads to:

$$
\begin{aligned}
S & =S_{g(1 \mid 1)_{N}}+\mathrm{g} \int \frac{d^{2} x}{8 \pi} \boldsymbol{\Phi}_{(00)_{(4)}} \\
& =\int \frac{d^{2} x}{8 \pi}\left(\sum_{a, b=1}^{2} \eta_{a b} \partial_{\mu} \phi^{a} \partial_{\mu} \phi^{b}+\epsilon_{a b} \partial_{\mu} \chi^{a} \partial_{\mu} \chi^{b}+g \chi^{1} \chi^{2} \cos \left(\left(\phi^{1}-\phi^{2}\right) / \sqrt{N}\right)\right)
\end{aligned}
$$

Logarithmic perturbations

Additional disorder as perturbations of the $\mathrm{gl}(\mathrm{rl\mid}) \mathrm{cft}$:

* in the original theory they correspond to left/right current interactions.
* after gapping out the su(N$)_{\text {。 }}$ degrees of freedom, additional disorder corresponds to relevant perturbations consistent with quantum numbers.

Quantum numbers:

* under the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I}) \mathrm{x}$ su(N) symmetries:

$$
\psi_{ \pm}, \beta_{ \pm} \quad \longleftrightarrow \quad(\langle 1,0\rangle \oplus\langle 0,1\rangle) \otimes[\mathrm{vec}]
$$

* currents= bilinears in these fields. Examining the quantum numbers:

For $\mathrm{N}<2$ the most relevant operator corresponds to $\langle\mathrm{O}\rangle_{(4)}$. Leads to:

$$
\begin{aligned}
S & =S_{g l(1 \mid 1)_{N}}+\mathrm{g} \int \frac{d^{2} x}{8 \pi} \boldsymbol{\Phi}_{\langle 0\rangle_{(4)}} \\
& =\int \frac{d^{2} x}{8 \pi}\left(\sum_{a, b=1}^{2} \eta_{a b} \partial_{\mu} \phi^{a} \partial_{\mu} \phi^{b}+\epsilon_{a b} \partial_{\mu} \chi^{a} \partial_{\mu} \chi^{b}+g \chi^{1} \chi^{2} \cos \left(\left(\phi^{1}-\phi^{2}\right) / \sqrt{N}\right)\right)
\end{aligned}
$$

* The above action defines agl(III) version of sine-Gordon theory.
* The logarithmic perturbations do not drive the theory to a new fixed point:

$$
\mathrm{e}^{i a\left(\phi^{1}-\phi^{2}\right)(z)} \mathrm{e}^{i b\left(\phi^{1}-\phi^{2}\right)(0)} \sim \text { regular }
$$

* The above action defines agl(III) version of sine-Gordon theory.
* The logarithmic perturbations do not drive the theory to a new fixed point:

$$
\mathrm{e}^{i a\left(\phi^{1}-\phi^{2}\right)(z)} \mathrm{e}^{i b\left(\phi^{1}-\phi^{2}\right)(0)} \sim \text { regular }
$$

Thus: The critical exponents should be in the gl $(1 \mid 1)_{\mathrm{N}}$ conformal field theory

Multi-fractal exponents

* a probe of disorder averaged higher moments; must be computed in the N-copy theory
density of states operator: $\quad \rho(x)=\bar{\Psi}_{-} \Psi_{+}+\Psi_{-} \bar{\Psi}_{+}$
q-th moment: $\quad P^{(q)}=\frac{\int d^{2} x \overline{\rho(x)^{q}}}{\left(\int d^{2} x \overline{\rho(x)}\right)^{q}}$
scaling at the critical point:

$$
\begin{equation*}
P^{(q)} \sim L^{-\tau_{q}} \tag{L=size}
\end{equation*}
$$

Relation to scaling dimension of operators: $\quad \tau_{q}=\widehat{\Gamma}_{q}+2(q-1)$

Multi-fractal exponents

* a probe of disorder averaged higher moments; must be computed in the N-copy theory
density of states operator: $\quad \rho(x)=\bar{\Psi}_{-} \Psi_{+}+\Psi_{-} \bar{\Psi}_{+}$
q-th moment: $\quad P^{(q)}=\frac{\int d^{2} x \overline{\rho(x)^{q}}}{\left(\int d^{2} x \overline{\rho(x)}\right)^{q}}$
scaling at the critical point:

$$
P^{(q)} \sim L^{-\tau_{q}}
$$

Relation to scaling dimension of operators: $\quad \tau_{q}=\widehat{\Gamma}_{q}+2(q-1)$

$$
\widehat{\Gamma}_{q} \quad \Leftrightarrow \text { scaling dimension of } \rho^{q}
$$

We compute $\widehat{\Gamma}_{q}$ in the $\mathrm{N}=2$ copy theory since for $\mathrm{q}>\mathrm{q}_{\mathrm{c}}$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2<q_{c}<3$.

The most revelant operator in ρ^{q} corresponds to the $<0, \mathrm{q}>g(\mathrm{I} \mid \mathrm{I})$ rep.

We compute $\widehat{\Gamma}_{q}$ in the $\mathrm{N}=2$ copy theory since for $\mathrm{q}>\mathrm{q}_{\mathrm{c}}$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2<q_{c}<3$.

The most revelant operator in ρ^{q} corresponds to the $<0, \mathrm{q}>g(\mathrm{I} \mid \mathrm{I})$ rep.

Result:

$$
\widehat{\Gamma}_{q}=\frac{q(1-q)}{4}
$$

We compute $\widehat{\Gamma}_{q}$ in the $\mathrm{N}=2$ copy theory since for $\mathrm{q}>\mathrm{q}_{c}$ the multi-fractal spectrum is known to cross over to a non-parabolic spectrum and $2<q_{c}<3$.

The most revelant operator in ρ^{q} corresponds to the <o, $\mathrm{q}>\mathrm{gl}(\mathrm{I} \mid \mathrm{I})$ rep.

Result:

$$
\widehat{\Gamma}_{q}=\frac{q(1-q)}{4}
$$

agrees to 1-2\% with numerical results of KlessedoMetzer (1995); Evers, Mildenberger and Mirlin (2001)

Localization exponent

Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e. it's a quantum critical point.

$$
\delta S_{\nu}=\int \frac{d^{2} x}{2 \pi} \lambda \mathcal{O}_{\nu}(x)
$$

$$
\xi_{c} \sim\left(\lambda-\lambda_{c}\right)^{-\nu} \quad \nu=1 /\left(2-\Gamma_{\nu}\right)
$$

$$
\Gamma_{\nu}=\text { scaling dimension of } \mathcal{O}_{\nu}
$$

Localization exponent

This exponent corresponds to tuning a parameter in the action to critical point, i.e. it's a quantum critical point.

$$
\begin{gathered}
\delta S_{\nu}=\int \frac{d^{2} x}{2 \pi} \lambda \mathcal{O}_{\nu}(x) \\
\xi_{c} \sim\left(\lambda-\lambda_{c}\right)^{-\nu} \quad \nu=1 /\left(2-\Gamma_{\nu}\right) \\
\Gamma_{\nu} \quad=\text { scaling dimension of } \quad \mathcal{O}_{\nu}
\end{gathered}
$$

What is the operator \mathcal{O}_{ν} ? no simple quantum number arguments to identify it

Hint from spin quantum Hall: here $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{N}}$ becomes $\operatorname{osp}(2 \mid 2)_{-2 N}$

Use the exact embedding:

$$
\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{2} \subset \operatorname{osp}(2 \mid 2)_{-2}
$$

By comparing conformal dimensions: $\mathrm{gl}(\mathrm{III})_{2}=$ percolation

In the $\mathrm{N}=2$ theory, the localization length exponent for percolation $\sim<2, \mathrm{I}>$ field.

Natural generalization in the $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{N}}$ theory is the field $\left.-<\mathrm{N}, \mathrm{N}-\mathrm{I}\right\rangle$

By comparing conformal dimensions: $\mathrm{gl}(\mathrm{II})_{2}=$ percolation

In the $\mathrm{N}=2$ theory, the localization length exponent for percolation $\sim<2, \mathrm{I}\rangle$ field.

Natural generalization in the $\mathrm{gl}(\mathrm{II})_{\mathrm{N}}$ theory is the field - <N,N-I>

This gives:

$$
\nu=\frac{N^{2}}{2 N-1}
$$

By comparing conformal dimensions: $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{2}=$ percolation

In the $\mathrm{N}=2$ theory, the localization length exponent for percolation $\sim<2, \mathrm{I}>$ field.

Natural generalization in the $g\left((\mathrm{I} \mid)_{\mathrm{N}}\right.$ theory is the field - <N,N-I>

This gives:

$$
\nu=\frac{N^{2}}{2 N-1}
$$

Since the $\mathrm{N}=2$ theory explains the multi-fractal exponents, let us double the number of copies one more time and consider $\mathrm{N}=4$:

$$
\nu=\frac{16}{7} \approx 2.29
$$

By comparing conformal dimensions: $\quad \mathrm{gl}(\mathrm{I} \mid)_{2}=$ percolation

In the $\mathrm{N}=2$ theory, the localization length exponent for percolation $\sim<2, \mathrm{I}>$ field.

Natural generalization in the $g\left((\mathrm{I} \mid)_{\mathrm{N}}\right.$ theory is the field $\left.\sim<\mathrm{N}, \mathrm{N}-\mathrm{r}\right\rangle$

This gives:

$$
\nu=\frac{N^{2}}{2 N-1}
$$

Since the $\mathrm{N}=2$ theory explains the multi-fractal exponents, let us double the number of copies one more time and consider $\mathrm{N}=4$:

$$
\nu=\frac{16}{7} \approx 2.29
$$

Real experiments:
2.3 ± 0.1,
S. Koch et. al. (r99r)

Numerical simulations: $2.33^{-2.35} \pm 0.03$, Huckestein (1995); D.-H. Lee and Wang (1996)

Conclusions

Conclusions

- a new proposal for the QHT

Conclusions

- a new proposal for the QHT
- relatively simple and predictive

Conclusions

- a new proposal for the QHT
- relatively simple and predictive
- some exponents are correct

Conclusions

- a new proposal for the QHT
- relatively simple and predictive
- some exponents are correct
- relies on new results for $\mathrm{gl}(\mathrm{I} \mid \mathrm{I})_{\mathrm{k}}$ current alg.
The End

[^0]: * Guruswamy, AL,Ludwig (1999)

