Recon: Solid on Solid Friction

- Force ll to interface between two surfaces that opposes relative motion
- can act in direction of motion (writ. grocend) example: friction force from road on tire when car accelerates] or opposite to the direction of motion [example: friction force from road on live, when car brakes]
case (1): Static -friction \vec{f}_{s} :
- no relative motion of surfaces in contact
- seff-adjust to prevent relative motion un to maximum value:

$$
f_{S} \leq\left(f_{s}\right)_{\text {max }}=\mu_{S} N \leftarrow \text { normal force }
$$

case (2): Kinetic friction \vec{f}_{k} :

- for sliding of surfaces in contact
- $f_{k}=\mu_{k} N$, indenendent of other 11 forces, rel. velocity

Elephant is large \Rightarrow has large cron-sect. area 4 $D \propto A$
(A.) Elephant
B. Feather
C. Same

Today:

- Fluid friction:
- Viscous and turbulent drag
- Turbulent drag force
- Damage from hurricanes
- Air drag
- Fish and bird formations
- Terminal speed

Fluid-Solid Friction: "Drag force" \vec{D}

\vec{D} : Drag fore exerted by the fluid on the object mowing relative to it; oppose relative motion
\vec{v} : Vobject relative to fluid
Two Regime:
(1) Vic comus Drag:

- ting objects, ting velocities andlor viscous (thick) fluid e.j. rain drops in clouds, bacteria in water
(2) Turbulent Drag:
- ordinary size of jects, every day to large velocities, fluid like air and water

Laminar Flow: Low velocities / small diameters / "thick" fluids \Rightarrow viscous drag

Turbulent flow: High

 velocities / larger dia-meters / "thin" fluids \Rightarrow turbulent drag
\vec{D} due to turbulent drag.
relevant factors:

- $\rho_{\text {fluid }}$: fluid density $[g]=\mathrm{kg} / \mathrm{m}^{3}$
- A object: effective con-sectional area of object $=$ area swept ont by $t \& 0 b$ ject that is \perp to \vec{r} a it mons throws $\in 4$ fluid "'shadow" area
light

- V: speed of the object relative to fluid

$$
[v]=\frac{m}{s}
$$

The force due to turbulent air drag depends on the density of the fluid ρ (in $\mathrm{kg} / \mathrm{m}^{3}$), the area A swept out by the object as it moves through the fluid (in m^{2}), and the object's speed v relative to the fluid (in m / s).

Using dimensional analysis, what is the relation between D, ρ, A, and v ? $D \propto \rho^{\alpha} A^{\beta} v^{\gamma}$

$$
\begin{aligned}
& \begin{array}{c|ccc}
D & \rho & A & V \\
\hline N & =k g \frac{m}{s^{2}} & \frac{k_{g}}{m^{3}} & m^{2} \\
\mathrm{~m} / \mathrm{s} \\
& \Rightarrow \alpha=1 \quad \gamma=2 \quad \beta=1
\end{array} \\
& \Rightarrow D \alpha \rho A v^{2}
\end{aligned}
$$

> A. $\quad D \propto \rho A v$
> B. $D \propto \rho A v^{2}$
> C. $D \propto \rho A^{2} v$
> D. $D=\rho A v$
> E. $\quad D=\rho A v^{2}$

Detailed Analysis: $\rho_{\text {air }}=1.2 \mathrm{ks} / \mathrm{m}^{3}$
$D_{\begin{array}{c}\text { turbulent dray } \\ \text { on object }\end{array}}=\frac{1}{2} C_{\text {obj }} S_{\text {slid }}^{\swarrow} A_{\text {obj }} V_{\text {object wot. fluid }}^{2}$
drag coefficient

- dimensionless
- typical: $0.1 \rightarrow 1.2$
- value depends on shape and surface texture of object
- flat plate: C~1.2
- sphere: C~0.5

Note: $\left.D \propto v^{2}\right\} \begin{aligned} & \text { different than kinetic friction } \\ & \text { for solid on }\end{aligned}$ for solid on solid $f_{k}=\mu_{k} \cdot v$

Damage from Hurricanes:

Wind Forces:

$\mathrm{D}=\left(\mathbf{1 / 2)} \mathrm{C} \rho \mathrm{A} \mathrm{v}^{2}\right.$,

Assume C ≈ 1

20 mph Umbrella blown inside out

30-45 mph
Trash cans
toppled over

45 mph Lawn furniture blown from stationary position

70 mph
150 lb .
person
knocked down

96 mph
Windows
blown out
100 mph
Mobile
homes
toppled over

111 mph
Cars blown
from
stationary
position

(m^{2})
0.3

9
(m/s)
(N)

14
3
$\begin{array}{llll}0.5 & 20 & 120 & 30\end{array}$
$0.5 \quad 30 \quad 270 \quad 60$

Damage from Hurricanes:

Damage from Hurricanes:

$\mathrm{D}=\left(\mathbf{1 / 2)} \mathbf{C} \rho \mathrm{A} \mathrm{v}^{2}\right.$,
 $\rho_{\text {water }} \sim 800 \rho_{\text {air }}$

BILL WARREN / Journal Staff Ithaca Firefighter Chris Kourkoutis, right, helps Allison Crouch cross Taughannock Creek after she got stranded with two others on the northern side of the creek Thursday afternoon at Taughannock Falls State Park. Trumansburg and Ithaca firefighters worked together to set up the rescue.

Trio rescued at Taughannock Creek

$$
\rho_{\mathrm{m} /} / \mathrm{sair} \neq 800
$$

What speed v_{w} of flowing water will exert approximately the same drag force on a Stop sign as the $160 \mathrm{mi} / \mathrm{h}$ wind from a hurricane?

Drag force:

$$
\Rightarrow D=\text { cont } \propto \rho v^{2}
$$

$\left.\Rightarrow v^{2} \propto \frac{1}{\rho}\right\} \begin{aligned} & \text { for same drag } \\ & \text { fore on ton }\end{aligned}$
$\Rightarrow\left(\frac{V_{\text {math }}}{V_{\text {air }}}\right)^{2}=\frac{\rho_{\text {air }}}{\rho_{\text {mate }}}=\frac{1}{800}$

$$
\Rightarrow \quad \frac{V_{w}}{V_{a i r}} \simeq \frac{1}{\sqrt{800}} \Rightarrow V_{w} \simeq \frac{1}{30} V_{\text {air }} \simeq 5 \mathrm{ni} / \mathrm{h}
$$

A. $\quad \sim 0.2 \mathrm{mi} / \mathrm{h}$
(B.) $\sim 5 \mathrm{mi} / \mathrm{h}$
C. $\sim 20 \mathrm{mi} / \mathrm{h}$
D. $\sim 40 \mathrm{mi} / \mathrm{h}$
E. $\sim 80 \mathrm{mi} / \mathrm{h}$

Air Drag in Auto Design: D = (1/2) C $\rho \mathrm{A} \mathrm{v}^{2}$

C:
1.2

C: 0.16

0.8-0.9

Air Drag in Auto Design: $D=(1 / 2) C \rho A v^{2}$

Honda Insight:
 $C_{D}=0.25, M P G=70$

Air Drag in Auto Design: $D=(1 / 2) C \rho A v^{2}$

Jeep Cherokee:
 $\mathrm{C}_{\mathrm{D}}=0.51, \mathrm{MPG}=21$

Air Drag in Ski Jumping: $D=(1 / 2) C \rho A v^{2}$

Air Drag in Luge:
 $$
D=(1 / 2) C \rho A v^{2}
$$

Record luge speed: $\mathbf{8 5} \mathbf{~ m i} / \mathrm{h}$

Air Drag in Cycling:

$\mathbf{D}=(1 / 2) \mathrm{C} \rho \mathrm{A} \mathbf{v}^{\mathbf{2}}$

Air Drag in Cycling: D $=(1 / 2) C \rho A v^{2}$

World Speed Records:
200 m, flying start: $71.3 \mathrm{~km} / \mathrm{h}$ (~45 mi/h)

1 hour:
$56.4 \mathrm{~km} / \mathrm{h}$ ($\sim 35 \mathrm{mi} / \mathrm{h}$)

How does the drag force exerted on a cyclist moving at $\boldsymbol{v}=54 \mathrm{~km} / \mathrm{h}$ compare with the force exerted on a cyclist moving at $\boldsymbol{v}=\mathbf{2 7} \mathbf{~ k m} / \mathbf{h}$?

$$
D=\underbrace{\frac{1}{2} C \rho A}_{\text {same }} v_{\text {vary }}^{2}
$$

$D \propto v^{2}$
$\frac{D(2 v)}{D(v)}=\left(\frac{2 v}{v}\right)^{2}=2^{2}=4$
$D(54 \mathrm{~km} / \mathrm{h}) / \mathrm{D}(27 \mathrm{~km} / \mathrm{h})=$?
A. $\quad 1 / 4$
B. $1 / 2$
C. $\quad 1$
$\begin{array}{ll}\text { D. } & 2 \\ \text { E. } & 4\end{array}$

Air Drag in Cycling: D $=(1 / 2) C \rho A v^{2}$

How fast could you cycle if you could eliminate air drag?

Bonneville Salt Flats, Utah:

Bonneville Salt Flats, Utah:

John Howard, USA, 1985: 152 mi/h

Fred Rompelberg, NL, 1995:
$167 \mathrm{mi} / \mathrm{h}$
(Rompelberg was 50 years old at the time.)

Bird Formations During Migration:

Fish Schools

By swimming in synchrony in the correct formation, each fish can take advantage of moving water created by the fish in front to reduce drag.
Fish swimming in schools can swim 2 to 6 times as long as individual fish.

Terminal speed
Key idea: $D \propto V^{2} \Rightarrow$ objects under in flumence of

Example (1): free fall
initial: low speed
$\downarrow \vec{v} \downarrow \vec{a}=\frac{\Sigma \vec{F}}{m} \prod_{w}^{D \alpha v^{2}}$
later: increased speed

$$
\sqrt{v}^{\vec{v}} \downarrow \vec{a}=\frac{2 \vec{p}}{m} \uparrow_{p}^{D<|w|}
$$

$$
\left.\begin{array}{l}
\text { even later: at tempisal speed } \\
\left.\qquad \begin{array}{l}
\downarrow \vec{a}=0 \\
\vec{v}=\vec{v}_{t} \quad \\
\quad \vec{F}=0
\end{array}\right\} \text { stable equilibrium }
\end{array}\right\}
$$

at $v=v_{t}: D\left(v_{t}\right)=|w|$ so that $\sum \vec{F}=0 \Rightarrow \vec{a}=0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \subset \rho_{\text {sluid }} A_{o b_{j} V_{t}^{2}}=m g \\
& \Rightarrow V_{t}=\sqrt{\frac{2 m_{o j_{i} g}}{C \rho_{\text {sinid }} A_{o b j}}}
\end{aligned}
$$

TABLE 6-1 SOME TERMINAL SPEEDS IN AIR

	TERMINAL SPEED $(\mathrm{m} / \mathrm{s})$	95% DISTANCE OBJECT (m)
16 lb Shot	145	2500
Sky diver (typical)	60	430
Baseball	42	210
Tennis ball	31	115
Basketball	20	47
Ping-Pong ball	9	10
Raindrop (radius $=1.5 \mathrm{~mm})$	7	6
Parachutist (typical)	5	3

${ }^{a}$ This is the distance through which the body must fall from rest to reach 95% of its terminal speed.

Example (2) of terminal speed:

$$
\begin{aligned}
& \text { at } v=v_{t}: \sum \vec{F}=0 \\
& \sum F_{x}=0=W_{x}-D\left(v_{t}\right) \\
& \Rightarrow D\left(v_{t}\right)=W_{x} \\
& \Rightarrow \frac{1}{2}\left(\rho A v_{t}^{2}=2 g \sin \theta\right. \\
& \Rightarrow v_{t}=\ldots
\end{aligned}
$$

