Recon: Fluid Friction -Drag Force

- fluid: gas or liquid
- Drag force: force of liquid on object. opposes relative motion
$D_{\text {turbulent }}^{\text {on ob ject }}=\frac{1}{2} C_{0 b j} S_{\text {fluid }} A_{\text {object }} V_{\text {object relative to fluid }}^{2}$
- Aus j_{j} : effective cros-sectional area of object perpendicular to \vec{V}
Example:
- Do ' \Rightarrow object reaches terminal speed:
at $v=v_{t}: \vec{D}$ such that $\overrightarrow{a_{06 j}}=0$ at dragforce
Example:
 at $v=v_{t}: \sum F_{x}=\stackrel{t}{0}=w_{x}-\overbrace{D\left(v_{t}\right)}^{v_{x}}$

$$
\Rightarrow D\left(v_{t}\right)=w_{x} \text { here }
$$

$$
\Rightarrow \frac{1}{2} \operatorname{csA} v_{t}^{2}=2 \dot{m} g \sin \theta
$$

Today:

- Forces in uniform circular motion
- Gravitrons
- A spinning water bucket
- Work and Energy:
- Kinetic energy
- Work done by a single force

Forces in uniform circular motion
$a=\frac{v^{2}}{r}$, point toward center of Circle: $|\vec{v}|=$ cont
$i{ }^{i}$: Now: If $a=\frac{v^{2}}{r}$, then according NII:
circle

$$
\begin{aligned}
& \underbrace{\sum_{\vec{F}_{\text {on object }}}=m \vec{a} \text { such that } \underbrace{|\vec{a}|=\frac{\nu^{2}}{r}}_{\begin{array}{c}
\text { effect of } \\
\text { force on }
\end{array}}}_{\begin{array}{c}
\text { cause of } \\
\text { motion }
\end{array}} \\
& \text { and } \sum \vec{F}_{\text {on obj. points to the object }}
\end{aligned}
$$ center of the circle, 1 to path at each point along the path.

A mass m rotates with constant speed at the end of a rope in a circle of radius r on a horizontal frictionless surface.

Which of the following is the correct free-body diagram for the forces acting on the mass?

- $\sum \vec{F}_{\text {on object }}$ is cause of \vec{a}, of circular motion! $a=\frac{v^{2}}{r}$ is effect of forces
$\Rightarrow\left|\sum \vec{F}_{\text {on }} a_{j}\right|=m|\vec{a}|=m \frac{v^{2}}{r}$ if moving in a circle at speed V
- no my strious fores! (only gravity), forces direct physical contact)
- Never show $\sum \vec{F}_{\text {onabj }}=\overrightarrow{F_{\text {net }}}$ on a FBD!
\Rightarrow never show $m \frac{k^{2}}{r}$ as a force on a $F B D$ for circular motion!

A coin of mass m rests at the edge of a horizontal platter of radius r.

If the coefficient of static friction between coin and platter is μ_{s}, what is the maximum speed v of the coin so that the coin does not slip?

$\Rightarrow \sum F_{y}=m a_{y}=0=N-W \Rightarrow W=W=m g$
$\Rightarrow \sum F_{x}=m a_{x} \stackrel{!}{=} \frac{匕^{2}}{r}=f_{s} \leqslant\left(f_{s}\right)_{\operatorname{mox}}=\mu_{s} N$
$\Rightarrow \frac{m V_{\text {mai }}^{2}}{r}=\mu_{s} \underset{\sim}{\text { mg }} \Rightarrow$ Whee $_{\text {max }}=\sqrt{\mu_{s} g r}$
cause of circe. zonation
$\mathrm{v}_{\text {max }}=$?
A. mgr
B. $\sqrt{m g r}$
C. $\mu_{\mathrm{s}} \mathrm{gr}$
D. $\sqrt{\mu_{\mathrm{s}} \mathrm{gr}}$
E. $\left(\mu_{\mathrm{s}} \mathrm{gr}\right)^{2}$
check units!

More Examples:
(1) Conical Pendulum:

horizontal circle
side view of m :

© along direction of acceleration?

$$
\begin{aligned}
\Sigma F_{y}=m a_{y} & =0=T_{y}-w \Rightarrow T_{y}=w=m g \\
\Sigma F_{x}=m a_{x} & \left.=m \frac{v^{2}}{r}\right\} \text { for circ. motion! } \\
& =T_{x} \Rightarrow T_{x}=\frac{m v^{2}}{r}
\end{aligned}
$$

(2) Graviton:

side-view FBD:

\Rightarrow If you don't fall If going on circle:

Needs to go fast enough, or you fall!
(3) Water in bucket:

FBD at top:

$$
\Sigma F_{>}=w+N=m a_{y} \stackrel{!}{=} m \frac{v^{2}}{r}=m g+\underset{\sum 0}{N}
$$

$\Rightarrow V \geqslant \sqrt{r g}$, or you get wet...
Note: normal force points down here?

Note!!!!!!
(4) Car on banked curve:
ton view:

cartraveb in horizontal circle of radius r at speed
FBD of car, side view

$$
\begin{gathered}
\Rightarrow \Sigma F_{y}=m_{c a} a_{y}=0=N_{y}-w \\
\Rightarrow N_{y}=w=m_{g}
\end{gathered}
$$

$\left.\Rightarrow \Sigma F_{x}=N_{x}=m_{\text {cor }} a_{x} \stackrel{i}{=} m^{v^{2}}\right\}^{\text {tog }}$ on circle

$$
\Rightarrow N_{x}=\frac{\sin 2^{2}}{r}=N_{y} \tan \theta
$$

works only at

$$
=m g \tan \theta
$$ one speed \checkmark for given θ

Until now:

- how things move: $\vec{r} \rightleftarrows \vec{V}(t) \vec{\rightleftarrows}(t)$ (kinematics)
- why things move (I): Forces, Newton's lams

$$
\sum \vec{F}=m \vec{a}
$$

Next i why things move (III):
Energy and Work
Type of energy:
Energy due to position $\}$ potential enegy, Kinetic
or motion of object thermal, chemical, nuclear... \} " I n t e r n a l ~ e n t r y " ~

What is energy?

- Energy: Scalar associated with the state of an object
- state (condition): position, velocity, tempertuer, chemical bonding state...
- Enejg can be trans formed from one type to another tyre, and transferred from one object to another.
- Total amount of energy is always $E E$ same! (Ensegy is conserved!)

Kinetic Energy J:

- Energy associated with the state of motion of an object
Equation? $\quad J \tau=\frac{1}{2} m_{\text {obj }} v^{2} \begin{aligned} & v=0 \rightarrow K=0 \\ & v T \rightarrow T \lambda\end{aligned}$

Units? $[J]]=[\operatorname{en} 2 s y]=k g \frac{m^{2}}{s^{2}}=N m=$ Joule $=$ I

$$
l=\log \frac{2 n}{s^{2}}
$$

Work: W What is work?
work $=$ energy trams fend to or from an object by a force acting on the object

- If $W_{\substack{\text { dore on } \\ \text { ojicut }}}>0 \Leftrightarrow$ ene sg is transferee to object
- If $W_{\text {domett }}^{\text {on }}<0 \Leftrightarrow$ entity is transferred from objet

Equation? 1004 at units:

$$
\begin{aligned}
{[\text { work }] } & =[\text { energy }]=y=N m \\
& \Rightarrow W \propto F d .
\end{aligned}
$$

\uparrow displacement of object

ϕ : angle between \vec{F} and \vec{d}
\vec{d} : dis ploce mont vector $=\vec{r}_{2}-\vec{r}_{1}$

$$
\begin{aligned}
\text { Work }=W_{\text {on object }} & =F d \cos \phi \\
& \text { note: if } \phi=90^{\circ} \\
& \Rightarrow W_{\text {dore }}=0
\end{aligned}
$$

