Recant
Lecture 15

- Forces in uniform circular motion:

- $\bar{\Sigma} \vec{F}_{\text {on object }}=m \vec{a}$ with $|\vec{a}|=\frac{v^{2}}{r}$ and $\Sigma \vec{F}_{\text {on object }}$ and \vec{a} : point to center of circle, 1 to path
- never show $m \frac{v^{2}}{r}$ on a FBD! \vec{a} is the result of the external forces on the object?
- Kinetic Energy: $\quad K=\frac{1}{2} m v^{2}$
- Work: energy transferred to or from an object by force for a constant force: $W=\vec{F}_{7} \vec{d}=F d \cos \phi=F_{1 \prime} d=F d_{\pi}^{\prime \prime}$

Today:

- Work and Energy:
- Work done by a single force
- Work-kinetic energy theorem
- Work done by gravity, friction...

A ball of mass \boldsymbol{m} is swung at the end of the rope in a horizontal circle．Its speed v is constant and the length of the rope is L ．Note：$V=$ cons $\Rightarrow D P=$ cant $\Rightarrow 2$ no work dome What work W is done by the tension T in the rope when the mass moves a small distance s along the circle？

$W=$ ？
A． mg s
䧑 Ts
C．TL
D． 0
\Rightarrow force that acts \perp to displace mont dos no work？
$\frac{\text { Work done by a single, constant force on object }}{\vec{a}}$
moves
here

\vec{d} : displace men rector $=\vec{r}_{2}-\vec{r}_{1}$
ϕ : angle between \vec{F} and \vec{d}

$$
F_{11 t o d}=F \cos \phi
$$

\uparrow

$$
\text { along } \vec{d}
$$

$d_{11 \phi_{0} \vec{F}}=d \cos \phi$ component of \vec{d} along \vec{F}
work $=W \equiv F \cdot d \cos \phi=F_{11 t_{0} \vec{d}^{\prime}}^{\downarrow} \cdot d=F{\stackrel{d}{11} \epsilon_{0} \vec{F}}_{\|}$
(diaplaremt) \uparrow (Fora)
note: if $\phi=90^{\circ} \Rightarrow W_{\text {by fore on }}^{\text {object }}=0$

A 10 kg crate is pulled 10 m along a frictionless horizontal floor by a force $F_{\text {pull }}=10 \mathrm{~N}$ applied at an angle of 10° with respect to the horizontal, as shown. What is the net work done on the crate by all the forces that act on it?

$\mathrm{W}_{\text {net }}=$?
A. $100 \cos 10^{\circ} \mathrm{J}$
B. $100 \sin 10^{\circ} \mathrm{J}$
C. $1000 \mathrm{~J}+100 \sin 10^{\circ} \mathrm{J}$
D. $1000 \mathrm{~J}+100 \sin 10^{\circ} \mathrm{J}$

$$
\begin{aligned}
& W=F d \cos \phi \\
& \Rightarrow \text { foo } F_{p u 11} \text { : } \\
& w_{\text {pull }}=10 \mathrm{~N} \cdot 10 \mathrm{~m} \cdot \cos 10^{\circ}=100 \mathrm{~J} \cdot \cos 10^{\circ} \\
& \Rightarrow \text { for } N: W_{N}=N d \cos 90^{\circ}=0 \\
& \Rightarrow \text { for legit: } W_{w}=0 \\
& \text { mum: } W_{\text {net }}=1007 \cdot \cos 10^{\circ}+0+0
\end{aligned}
$$

- Work dore by a single constant force on object

$$
\begin{aligned}
& W_{\text {by force on }}=F d \cos \phi^{K}=F_{11} d=F d_{11} \\
& \text { obicit between } \vec{F}^{2} \\
& \rightarrow \rightarrow \rightarrow
\end{aligned}
$$

Mathematical Shorthand: $W=\vec{F}: \vec{d}$
"dot "product of two vectors

use this $\mathcal{F}=F_{x} d_{x}+F_{y} d y$ note: tangluetween theme rectos
if you know $\bar{\gamma}$ component can be <0!
of vectors wart for any coordinate. system.

- Work dom by multiple forms (constant) acting on an abject:

$$
\begin{aligned}
& \text { On an object: } \\
& \begin{aligned}
W_{\text {net }} & =W_{1}+W_{2}+\ldots=\vec{F} \cdot \vec{d}+\vec{F}_{2} \cdot \vec{d}+\ldots \\
& =(\Sigma \vec{F}) \cdot \vec{d}=\vec{F}_{\text {net }} \cdot \vec{d}=F_{\text {net }} d \cos \phi
\end{aligned}
\end{aligned}
$$

$\overrightarrow{F_{n a t}}$
angle between
$\vec{F}_{\text {net }}$ and \vec{d}

Work-Jkinetic Energy Theorem:

- Work : Energy tramferred to or from an object by force
- Kinetic energy: $J_{P}=\frac{1}{2} m v^{2}$

$$
\text { Not: } \Delta I \ll 0 \text { or } \Delta K>0 \text { possib4! }
$$

$$
\begin{aligned}
& \frac{\Delta}{\lambda} Y_{0} \text { of objet }=\Psi_{K_{f}}-J \Gamma_{i}=W_{\text {net on object by all }} \\
& \text { change! } \\
& \text { object whit it moves } \\
& \text { from some initial to } \\
& \binom{\text { change in hinctic }}{\text { energy of objcit }}=\binom{\text { net some final paction }}{\text { on abject by dore }}=\sum W_{i}
\end{aligned}
$$

check wark-Juinetic Enegy theorm:

$$
\begin{aligned}
& \Delta K_{=}=\Psi_{f}-J_{i}=\frac{1}{2} m v_{f, x}^{2}-\frac{1}{2} m v_{i, x}^{2} \\
& =W_{\text {net }}=\underbrace{W_{N}+W_{\text {wost }}}_{=0 \text { here }}+W_{\text {Pri1 }} \\
& =\vec{F}_{\text {pul1 }} \cdot \vec{d}=F_{\text {puli }} \times d
\end{aligned}
$$

use wII: $\Sigma F_{x}=m a_{x}=F_{p_{\text {will }}}$
『副 $i s \log x$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} m\left(v_{f, x}^{2}-v_{i, x}^{2}\right)=F_{p_{4}} \|_{1, x} d=m a_{x} d \\
& \left.\Rightarrow v_{f, 1}^{2}-v_{i, x}^{2}=2 a_{x} d=2 a_{x} \Delta x\right\} \text { nothing }
\end{aligned}
$$

\Rightarrow sare as Newton's lans, but worklhinetic helpos to solue some problems much easies then Newton's Lam!

A car of mass m traveling at a speed v_{i} is braked to a stop by a constant force F.

What is the stopping distance d of the car? (Use energy/work concepts to solve, not NII.) use $\Delta J R=W_{\text {net }}=\sum W_{i}\binom{$ worlh-kinalic }{ eng y therm }$d=$?

$$
\text { FBD of car } \quad W_{\text {weight }}=0 \quad\left(\phi=90^{\circ}\right) \quad \text { A. } F / v_{i}
$$

B. $m v_{i} / F$
C. $m v_{i}^{2} / 2 F$
D. $m v_{i}^{2} / F$
E. $2 F / m v_{i}{ }^{2}$

Work dore by specific forces:
(1) Work dom by -gravity:
$\uparrow+y \in$ important?

moves down $\mathrm{F}_{\mathrm{g}}>0$ mows up $\Rightarrow W_{g}<0$

$$
\begin{aligned}
& \text { work } \\
& W_{\text {by grau.ry }}=\vec{F} \cdot \vec{d} \\
& 0^{\circ} \text { for dom } \\
& \begin{array}{c}
k \text { motion } \\
\phi=F d
\end{array} \\
& =F d \cos \phi=F d \\
& =-m g \Delta y \in \Delta><0 \\
& =-m g\left(y_{f}-\gamma_{i}\right) \\
& =-\operatorname{mg}\binom{\text { helical }}{\text { displanemet }} \\
& \text { for ty up! }
\end{aligned}
$$

