Recap: Energy and Work Lecturels

- Work: energy transferred to or from an object by force for a constant force:

$$
\begin{aligned}
& W=\vec{F}_{;} \cdot \vec{d}=F d \cos \phi=F_{\prime \prime} d=F d_{1 \prime}
\end{aligned}
$$

$$
\begin{aligned}
& W=\vec{F} \cdot \vec{d}=F_{x} d_{x}+F_{y} d_{y}^{0}
\end{aligned}
$$

- Work-Jrinetic Energy Theorem
for any coordinate syoten
$\Delta K_{\text {of object }}=J_{S}-K_{i}=W_{\text {net done by all }}$ acting need to include $\frac{\text { all }}{c=}$ force hex acting on object

$$
\begin{aligned}
& \equiv W_{1}+w_{2}+w_{3}+\ldots=\left(\sum_{i} \vec{F}_{i}\right) \cdot \vec{d}=F_{\text {net }} d \cos \phi \\
& 17 \text { helps to solve some problem }
\end{aligned}
$$

Work/ energy helps to solve some problems much easier than Newton's laws!

- Work by gravity: $W_{b y} g$ on obj $=-m g(\underbrace{y_{f}-y_{i}}_{i f})$

Today:

- Work done by friction, springs
- Compound bows
- Power

A pig has a choice of three different frictionless slides as shown.
With which slide will the pig reach the ground with the greatest speed? (Think about the work done on the pig by the pig's
\hat{l}^{+y}
A. (a)
B. (b)
C. (c)
D. all the same
$v_{s}=$?

$\xrightarrow{4} \rightarrow$

$$
\begin{aligned}
& W_{\text {by granit on objeet }}=\vec{F} \cdot \vec{d}=F d_{11} \\
& =m g d \underbrace{\cos \phi}_{>0}=m g d_{11} \\
& =-m g \Delta y=-m g\left(y_{f}-y_{i}\right)
\end{aligned}
$$

as before, inder. of Δx !

$$
\begin{aligned}
& \Rightarrow W_{\text {by graity }}<0 \\
& \quad \text { on object } \\
& \Rightarrow K_{s}<J_{i} \quad\left(W_{v}=0\right)
\end{aligned}
$$

(slows down)
(2) Work done by friction force $\overrightarrow{F_{1 N}}$

$$
\begin{aligned}
W_{\text {by } f_{\text {fo on }}} & =f_{k} d \underbrace{\cos \text { eject }} \\
& =-f_{k} d<0
\end{aligned}
$$

$\Rightarrow J_{P_{f}}<J P_{i}$ her

$$
\begin{aligned}
& W_{b y} f_{s} \text { on }=f_{s} d \cos 0^{\circ}>0 \\
& \text { objet "2" } J T_{f, 2}>T_{i, 2} \text { here } \\
& \Rightarrow \quad\left(W_{g}=0, W_{v}=0\right)
\end{aligned}
$$

$\left(W_{g}=0, W x=0\right)$
\Rightarrow Friction forces alwap oppose relative motion, but can lead to a decrease or an increase in the kinetic enemy of an ob ject.
(3) work by ypring-foras:

$$
F_{\text {by oping }}^{\text {on obj: }}=-k x^{\longleftarrow}
$$

forcu varis mits x, i.e. alongth path
(4) Gensal case: Worll dore by a variable
for 1-D force:

brak in to small interals with Fzconst

Back to opring:

A toy gun has a spring with spring constant $\boldsymbol{k}=\mathbf{1 0 0} \mathbf{N} / \mathbf{m}$. The spring is compressed a distance of $10 \mathbf{~ c m}$ and a ball of mass $m=10 \mathrm{~g}$ is inserted in the gun.

$$
0.01 \mathrm{~kg}=1 / 100 \mathrm{~kg}
$$

After the trigger releases the spring, what will be the ball's speed v when the spring has returned to its equilibrium length?

$$
\begin{aligned}
& {\operatorname{rrom}-10_{i}=0}_{V_{i}}^{x_{i}=-10 \mathrm{~cm}} \quad \begin{array}{l}
\quad \\
x=0
\end{array} \\
& \longrightarrow+x \begin{array}{l}
\begin{array}{l}
\mathrm{V}=\text { ? } \\
f \\
\text { A. } 1 \mathrm{~m} / \mathrm{s}
\end{array} \\
\text { B. }
\end{array} \\
& \text { 1-rorrom- } 10 \\
& v_{f}=? \\
& \text { B. } 5 \mathrm{~m} / \mathrm{s} \\
& \text { C. } 10 \mathrm{~m} / \mathrm{s} \\
& \text { D. } 50 \mathrm{~m} / \mathrm{s} \\
& \text { E. none of the above } \\
& \Rightarrow \Delta D P_{\text {ball }}=J r_{f}-J r_{i}=W_{\text {net }}=W_{\text {by oping }}=0.5 J=1 / 2 m v_{f}^{2} \\
& v_{i}=0 \Rightarrow X_{i}=0 \\
& \Rightarrow V_{f}=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Power: What is power?
$P=$ rate at which work is dom by a force
 done

$$
P=\text { instantaneous power }=\frac{d W}{d t}=\begin{aligned}
& \text { slope of the } \\
& W-t \text { graph }
\end{aligned}
$$

Unit? $[p]=\frac{y}{s}=W a t t=W$

$$
1 \mathrm{hp}=746 \mathrm{~W}
$$

Exaph: $100 \mathrm{hp}=74,600 \mathrm{w}=1000 \times 75 \mathrm{~h} \operatorname{ligh}$ bulbs

$$
\Rightarrow \text { Powe }=P=\frac{d w}{d t}=\frac{d}{d t}(\overbrace{\substack{\vec{F} \cdot \vec{d}}}^{\text {forconstant fare }})=\frac{d}{d t}(F d \cos \phi)
$$

\Rightarrow if $\vec{F}^{\prime}=\cos t$, then:

$$
\begin{aligned}
P=\vec{F} \cdot \frac{d \vec{d}}{d t} & =\vec{F} \cdot \vec{v} \\
& =F V \cos \rho \underline{L^{2}} \text { and betwed } \vec{v} \\
\xrightarrow{P} & =F_{x} V_{x}+F_{y} V_{y}
\end{aligned}
$$

A cyclist travels along a flat road at constant speed v . The power produced by the cyclist all goes to overcoming air drag.
How does the power the cyclist must produce to travel at $54 \mathbf{k m} / \mathrm{h}$ compare with that required to travel at $\mathbf{2 7} \mathbf{~ k m} / \mathrm{h}$?

$$
P(54 \mathrm{~km} / \mathrm{h}) / P(27 \mathrm{~km} / \mathrm{h})=?
$$

$$
\begin{aligned}
& P_{\text {cyclist }}=-P_{\text {rad }} \\
& \text { A. } 1 \\
& \text { B. } 2 \\
& \text { C. } 4 \\
& \text { D. } 8 \\
& \Rightarrow \frac{P(54 \mathrm{~mm} / \mathrm{h})}{P(27 \mathrm{~mm} / \mathrm{h})}=\left(\frac{2}{1}\right)^{3} \\
& \text { E. } 16
\end{aligned}
$$

Power and Energy in Cycling

Assume $P_{\text {cyclist }} \approx$ Drag force \times velocity ($\mathrm{P}=\mathrm{Dv}$)
$\therefore \mathrm{P}_{\text {cyclist }}=1 / 2 C \rho A v^{2} \times v=1 / 2 C \rho A \mathbf{v}^{3}$

- Assume C~0.4, $\quad r=1.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~A} \sim 0.7 \mathrm{~m}^{2}$
- Assume human body $\sim 25 \%$ efficient in converting food energy into mechanical energy.
- $1 \mathrm{Cal}=4.2 \mathrm{~J}, 1$ food Calorie $=1 \mathrm{kCal}=4,200 \mathrm{~J}$

Prof. Liepe:

$v \sim 8 \mathrm{~m} / \mathrm{s}(17 \mathrm{mi} / \mathrm{h}) \quad P \sim 86 \mathrm{~W}(\sim 0.12 \mathrm{hp})$
Burns ~ $344 \mathrm{~W}, 1.24 \mathrm{MJ} /$ hour, $295 \mathrm{kCaI} /$ hour
Professional distance cyclist:
v ~ $14 \mathrm{~m} / \mathrm{s}$ ($\sim 30 \mathrm{mi} / \mathrm{h}$) $P \sim 460 \mathrm{~W}(\sim 0.6 \mathrm{hp})$
Burns ~1.8 kW, 6.6 MJ/hour, 1580 kCal/hour
Professional sprint cyclist: $v \sim 20 \mathrm{~m} / \mathrm{s}(\sim 45 \mathrm{mi} / \mathrm{h}) \quad P \sim 1340 \mathrm{~W}(\sim 1.8 \mathrm{hp})$
Burns ~ $5.4 \mathrm{~kW}, 19 \mathrm{MJ} /$ hour, $4600 \mathrm{kCal} /$ hour

Average daily food energy intake for Tour de France Cyclists:

~10,000 kCal/ day

(~7 lb of uncooked pasta)

