Recap:

- $\Delta K_{o b j}=W_{\text {net }}$
$\Delta E_{\text {mech }}=W_{\text {by }}$ all non -cons. forces

$$
E_{\text {mac }}=J_{o b_{j}}+U_{o b_{j}}
$$

$$
\text { - } \Delta U=-W_{\text {cons }}=-\int_{x_{i}}^{x_{f}} F(x) d x \Leftrightarrow \frac{d U}{d x}=-F_{x}(x)=\left\{\begin{array}{l}
\text { slope ct of } \\
U-x \text { graph }
\end{array}\right\}
$$

- Equilibrium: $F\left(x_{\text {equ }}\right)=0\left\{\begin{array}{l}\text { if }\left.\frac{d F}{d x}\right|_{x=x_{\text {eq4 }}}<0 \text { : stable } \\ \text { if }\left.\frac{d F}{d x}\right|_{x=x_{\text {equ }}} ^{>0} \text { : unstable }\end{array}\right.$ - Simple Harmonic Motion:

Special Kind of oscillation : $x(t)=x_{m} \cos (\omega t+\phi)$
x_{m} : peak amplitude
T : period of motion

$$
\begin{gathered}
f=\frac{1}{T} \text { frequent. of } \text { fin }^{\text {ind }} \text { of oscil. }[f]=\frac{1}{s}= \\
w=2 \pi f=2 \pi / T=\text { angular frequency } \\
{[\omega]=\frac{1}{s}=\text { "rad "" }}
\end{gathered}
$$

Which of the following corresponds to the velocity $\mathbf{v}(\mathbf{t})$ of the particle whose position $x(t)$ is as shown below?

Today:

- Simple Harmonic motion: forces, energy

Twist angel of spider suspended from its silk thread
\Rightarrow strong damping (that's why they hardly ever twist!)

$$
x(t)=x_{m} \cos (\omega t+\phi)
$$

pride T (gets back when it stated)
$\rightarrow T=$ pride of oscillation $[T J=S$

$$
\begin{aligned}
& \rightarrow f=\text { frequency } \equiv \frac{1}{T} \quad[f]=\frac{1}{S}=H_{z} \\
& \rightarrow \omega=\text { angular frequency } \equiv 2 \pi f=\frac{2 \pi}{T}
\end{aligned}
$$

$$
[\omega]=\frac{1}{s}=\frac{\text { "rad" }}{s} \quad \begin{gathered}
\text { "red" "i sot a a unit, jut } \\
\text { indicak facta of " } 2 \pi^{*} \text { in equation }
\end{gathered}
$$

So

$$
\begin{aligned}
& \cos (\omega(t+T)+\phi) \stackrel{!}{=} \cos (\omega t+\phi)\} \begin{array}{c}
\text { etherns to } \\
\text { where it } \\
\text { o tar ted }
\end{array} \\
& \Rightarrow \omega(t+T)=\omega t+\omega T \stackrel{!}{=} \omega t+2 \pi
\end{aligned}
$$

\rightarrow argrement of cos must increase by 2π during $\Delta t=T$

$$
\Rightarrow \omega T=2 \pi \Rightarrow \omega=\frac{2 \pi}{T}=2 \pi f \text { as before }
$$

Which of the following corresponds to the acceleration $\mathbf{a (t)}$ of the particle whose position $x(t)$ is as shown below?

$\Rightarrow a(t)$ a $-x(t)$ in SHM why?
(1) SHM: $\quad x(t)=X_{\text {max }} \cos (\omega t+\phi)$
derivative: $\left.\frac{d}{d t} \cos \left(f^{C}(t)\right)=-\sin (f(t)) \cdot \frac{d f(t)}{d t}\right\}_{\text {hale }}^{\text {chain }}$
(2) velocity: $v(t)=\frac{d x}{d t}=-\omega x_{\text {max }} \sin (\omega t+\phi)$

$$
=-V_{\text {max }} \sin (\omega t+\theta)
$$

hits max. sped $V_{\text {max }}=\omega X_{\max }$
(3) acceleration:

$$
\begin{aligned}
a(t)=\frac{d v}{d t} & =-\omega^{2} x_{\text {max }} \cos (\omega t+\phi) \\
& =-a_{\text {max }} \cos (\omega t+\phi)
\end{aligned}
$$

wits max. accel. $a_{\text {max }}=w^{2} x_{\max }=w\left(w x_{\max }\right)$
\Rightarrow compar (1) and (3) $=\omega V_{\text {max }}$

$$
a(t)=-w^{2} \times(t) \rightarrow a(t) \alpha-x(t)
$$

What producs SHM? \rightarrow i.e. $a(t)$ insH-Y
\Rightarrow NII: Force causs acceleration!

$$
N \underline{I}: \sum F=\underline{F_{\text {net }}}=m \underset{\left.r_{a=-\omega^{2} x(t)}^{a}(t)=-m \omega^{2} x(t)\right\} \text { sHM }}{f o m}
$$

\Rightarrow Object will $d_{0} S H \mu_{\text {, if }} F_{\text {net }}(t)=-m \omega^{2} x(t)$

- restoring force (points to $x=0$ equilibrimo)
- |F| propartional to $|x|$ (and not $x^{2},|x|^{3} \ldots$)
- Special care 1: Mars on spring_

FBD:

(no froction)
motion of m ? $\sum F=F_{\text {met }}=F_{b_{\text {p }} \text { pis }}=-k x$
\Rightarrow for $S H M$: need $F_{\text {net }}=-\operatorname{mow}^{2} x$ linear rostaving force
for mass on spios: $\left.F_{\text {net }}=-k \times\right\} \int_{\text {with }} H M!$ $\Rightarrow 5 A-\mu$!
with $k=$ mow ${ }^{2}$
\Rightarrow "natural angl. frequency" of oscillation: $\omega_{0}=\sqrt{\frac{k}{m}}=2 \pi f_{0}$
Nobe: w is indespendent of

$$
\begin{aligned}
& x_{\max }\left(\text { and }>0 \text { is } T=\frac{2 \pi}{\omega}\right) \\
\Rightarrow & T_{0}=2 \pi \sqrt{\frac{m}{k}}
\end{aligned}
$$

indicats "natural" frquency without demping / friction

Special case 2: Simple pendulican \rightarrow

$S: \operatorname{arcleng} f i=L \theta$
Walorpputs

$$
W_{\perp} t_{\text {pat }} \vec{\theta} \vec{\omega}=m \vec{j}
$$

Tin "rad"
$x=0$
$\Rightarrow F_{\text {along pots }}=-\left|W_{\text {along pots }}\right|=-m g \sin \theta$
for small $\theta: \sin \theta \simeq \theta=\frac{S}{L} \approx \frac{x}{L}$

$$
T \text { in "rod" not deg }
$$

$\Rightarrow F_{\text {alan pats }} \simeq-m g \frac{x}{L}$ for $\operatorname{small} \theta$
linear retain force $\Rightarrow S H M$ for small θ
\Rightarrow for $\int \mathrm{HM}$, seed $\left.F_{\text {net }}=-m \omega^{2} x\right] 5 \mathrm{HM}^{2}$ with
for simple pendenlunat $\left.F_{\text {met }}=-m \frac{g}{L} x\right\} \Rightarrow \omega_{0}=\sqrt{9 / L}$
$\operatorname{small} \theta$

Angle, sine and tangent

Energy in SHM:

assume that no work is done by non-cons. force (i.e no friction, no applied forces,...)
\Rightarrow for $51+M$, have:

$$
\begin{aligned}
& E_{\text {secs }}=J v+U_{\text {sp }}=\text { cont }=\frac{1}{2} m v^{2}(t)+\frac{1}{2} k x^{2}(t) \\
& \left.E_{\text {mac }}=\frac{1}{2} m\left[-V_{\text {max }} \sin (\omega t+\phi)\right]^{2}+\frac{1}{2} k\left[x_{\text {mo, }} \cos / \omega t+\phi\right)\right]^{2} \\
& \uparrow U_{\text {max }}=\omega x_{\text {mon }} \quad \uparrow k=m \omega^{2} \\
& =\frac{1}{2} m \omega^{2} x_{\operatorname{mes}}{ }^{2} \sin ^{2}(\omega t+\phi)+\frac{1}{2} m \omega^{2} x_{m+1}^{2} \cos ^{2}(\omega t+\phi) \\
& =\frac{1}{2} m \omega^{2} x_{m \alpha_{1}^{2}}^{2}(\underbrace{\left.\sin ^{2}(\omega t+\phi)+\cos ^{2}(\omega t+\phi)\right]} \\
& =1 \\
& =\frac{1}{2} m \omega^{2} x_{m+x^{2}}=\cos t!=\text { under. of time }! \\
& \Rightarrow E_{\text {mic }}=J Y(t)+U(t)=\frac{1}{2} \min \omega^{2} x_{\max }^{2}=\frac{1}{2} m v_{\max }^{2}=\frac{1}{2} k x_{\max }^{2}=\operatorname{coux} \\
& \text { 刀 } \\
& v_{m+1}=\omega x_{m+1}
\end{aligned}
$$

