Recap: Harmonic Motion Lecture 21

- Damped Harmonic Motion:

math: $\left(e^{a}\right)^{b}=e^{a^{b}}$

$$
e^{a+b}=e^{a} \cdot e^{b}
$$

$$
\begin{aligned}
& x(t)=\underbrace{x_{\max }(t)}_{x_{\max }(t)} \cos (\omega t+\phi) \\
& x_{\max }(t=0) e^{-t /(2 \tau)}
\end{aligned}
$$

$\Rightarrow E_{\text {meal }}(t)=E_{\text {mech }}(t=0) e^{\text {note "t/ " "here! }}$
τ : energy decay time

$$
\text { in each ot }=\tau:\left\{\begin{array}{l}
x_{\max } \rightarrow x_{\max } / \sqrt{e} \\
E_{\operatorname{mech}} \rightarrow E_{\operatorname{mecs}} / e
\end{array}\right.
$$

- Forced (driven) oscillations:

strong damping
\Rightarrow short τ
\Rightarrow large $\Delta \omega=\frac{1}{\tau}$
\Rightarrow small quality factor $Q \equiv \omega_{0} \tau$
\Rightarrow small amplitude at resonance αQ

What is the initial speed you would have to give an object so that it can escape from the Earth's surface and never come back, i.e. go infinite far away from Earth (escape speed)?

$$
\begin{array}{ll}
\text { v = ? } \\
\text { A. } & 25 \mathrm{mi} / \mathrm{h} \\
\text { B. } & 250 \mathrm{mi} / \mathrm{h} \\
\text { C. } & 2,500 \mathrm{mi} / \mathrm{h} \\
\text { D. } & 25,000 \mathrm{mi} / \mathrm{h} \simeq 7 \mathrm{mi} / \mathrm{sec} \\
\text { E. } & 250,000 \mathrm{mi} / \mathrm{h}
\end{array}
$$

Today:

- Newton's law of gravitation
- Satellite motion
- Energy of orbital motion
- Escape speed

To us, Newton discovered gravity. To the apples ...

Gravity:
F_{g} : gravitational force between two objects; "action at a distance "force; alwape attracts objects.

Newton's Law of gravitation

$$
\left|F_{g}(r)\right|=G \frac{m M}{r^{2}} \propto \frac{1}{r^{2}}
$$

$$
G=6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}
$$

: Universal I gravitation constant

near Eart(') sufau:

$$
\begin{aligned}
& F_{g}(r=r_{\substack{r_{E} \\
\text { earth }}}=G \frac{m \mu_{E}}{r_{E}^{2}}=m(\underbrace{\frac{G \mu_{E}}{r_{E}^{2}}}_{=10 \mathrm{~m} / \mathrm{s}^{2}})=m g \\
& \Rightarrow \text { mor gen eally: }
\end{aligned}
$$

Note π :
 one of the object mans is large.

Note III: for distributed sars (planets...)

\rightarrow Satellite Motion
$\left.\begin{array}{l}\text { Vorb } \\ \underset{\vec{a}}{ }{ }^{2}\end{array}\right\}$ "satellite" in uniform circular

$$
\measuredangle F_{g}^{m} \text { VII: } \Sigma F=F_{g}=m a
$$

$$
\begin{aligned}
& \Rightarrow F_{\substack{b, \text { grown } \\
\text { on m }}}=G \frac{m \mu}{r_{0, b}^{2}}=\text { ma } a=m \frac{V_{\text {ooh }}^{2}}{r_{\text {orb }}} \\
& \Rightarrow V_{\text {orb }}=\sqrt{\frac{G M}{r_{G b}}}\left\{\begin{array}{l}
\text { orbital speed of } \\
\text { satellite, depends } \\
\text { on } M, \text { but not } \\
\text { on mars, mon } \\
\text { satellite! }
\end{array}\right.
\end{aligned}
$$

$\gamma_{\text {orb }} \rightarrow 2 \gamma_{\text {orb }}$
If you double the orbital radius of a satellite in a circular orbit, what must happen to its orbital velocity?

$$
\begin{aligned}
& V_{\text {ab }}=\sqrt{G-\mu} r_{\text {rob }} \\
& \Rightarrow V_{a b} \propto \frac{1}{\sqrt{r}} \\
& \Rightarrow \frac{V_{\operatorname{arb}}(2 r)}{V_{\text {arb }}(r)}=\frac{\sqrt{r}}{\sqrt{2 r}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
v_{f}=?
$$

A. $\quad v_{i}$
B. $\quad \sqrt{2} v_{i}$
C. $\quad 2 v_{i}$
(D.) $1 / \sqrt{2} v_{i}$
E. $\quad 1 / 2 v_{i}$
\Rightarrow period:

$$
T=\frac{2 \pi V_{\text {orb }}}{V_{\text {orb }}} \propto r_{\text {orb }} \cdot \sqrt{r_{\text {ab }}}=r_{\text {orb }}^{3 / 2}
$$

Satellites orbiting Earth

Energy of satellite in Orbit (orbital motion)

- Gravitational potential energy : $U_{g}(r)$

Choose $\operatorname{Ug}(r=\infty)=0$
move satellite frons to rows

$$
\begin{aligned}
& \Delta U_{g}=U_{g}(r)-\underbrace{U_{g}(\infty)}_{r=0}=U_{g}(r)=-W_{g} \\
& =-\int_{-}^{r} F_{g}(r) d r=+\int_{\Gamma} G \frac{m \mu}{r^{2}} d r=-G \frac{U_{m}}{r}
\end{aligned}
$$

∞^{∞} Ff point in ${ }^{\infty}-r$ diction

$$
\Rightarrow\left[U_{g}(r)=-G \frac{m \mu}{r}\right]_{\text {not }} \leqslant 0 \quad F_{g}=-G \frac{\operatorname{m\mu }}{r^{2}}
$$

- use for large changes in r,
or if not on Earth's' Duffy
- use out =ungay for oral chars

$$
F_{g}(v)=-\frac{d U_{g}(v)}{d r} v
$$ Δy near Earl'' surface only

- Tinetic Enesy Jrors (r)

$$
\begin{aligned}
& \text { Ir arb }\left(r_{\text {ord }}\right)=\frac{1}{2} \text { m } V_{\text {orb }}{ }^{2}=\frac{1}{2} \text { m } G \frac{\mu}{r_{a b}}=-\frac{1}{2} U_{g}\left(r_{\text {as }}\right) \\
& V_{\text {ors }}=\sqrt{\frac{G M}{r_{\text {as }}}} \\
& \geqslant 0 \text { alman } \\
& \text { (nok JP } \geq 0 \\
& \text { almay) }
\end{aligned}
$$

- Mechanical Enesy:

$$
\begin{aligned}
E_{\text {macs, orb }}\left(r_{\text {orb }}\right) & =J P_{\text {ors }}\left(r_{\text {ars }}\right)+U_{g}\left(r_{\text {ars }}\right) \\
& =-\frac{1}{2} U_{g}\left(r_{\text {oss }}\right)+U_{g}\left(r_{\text {ods }}\right)=\frac{1}{2} U_{g}\left(r_{\text {ars }}\right) \\
& =-\frac{1}{2} G \frac{m \mu}{r_{\text {ors }}} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& E_{\text {mach }}=U_{s}\left(r_{a b}\right)+J F\left(r_{a s}\right) \\
& =\frac{1}{2} U_{g}\left(r_{a s}\right)
\end{aligned}
$$

Escape Speed:

$$
\begin{aligned}
& \rightarrow \boldsymbol{r} \cdot E_{\text {val }}=J p+U_{g}(\gamma) \\
& \text { - If } E_{\text {meme }}<0 \Rightarrow \text { bound state } \\
& \Rightarrow \text { turning point }\left(N_{N}=0\right) \\
& E_{\text {mech }}=U_{g}\left(r=\gamma_{\text {tum }}\right) \\
& \text { - if } E_{\text {ac }} \geq 0 \Rightarrow \text { no bound state } \\
& \Rightarrow \text { object con reach } \\
& r \rightarrow \infty
\end{aligned}
$$

\Rightarrow minimum kinetic ene dy that we must give to an ubiect at the surface of the planet, so that if con escape to $r \rightarrow \infty$

$$
Y_{\text {Csc }}=-U_{g}\left(r_{\text {planet }}\right) \Leftrightarrow \operatorname{girs} E_{\text {mail }}=0
$$

$$
\Rightarrow \frac{1}{2} m V_{e x}^{2}=G \frac{m \mu}{r_{p}}
$$

escape speed: minimum speed at surface of planet to

$$
\Rightarrow V_{\text {esc }}=\sqrt{\frac{2 G M}{r_{p}}} \quad \text { go from } r=r_{p} \text { to } r=\infty
$$

Apparent Weight:

apparent weight
= sensation of weight because we are squished between Eg and N $=|N|$
\Rightarrow apparent weightlessness, if $N=0$, and only force acting on you is Fg (e.g. free fall, astro naut in space station, ...)

\Rightarrow true weight less ness : $F_{g}=0$

