Recap: Gravity Lecture 22

- Newton's Law of Gravitation: m
$r=c e n t e r-t o-c e n t e r$
M (D) distance objects by point mass at objects center

$$
\begin{aligned}
& \Rightarrow\left.U_{g}(r)=-G \frac{M m}{r}\right\} \begin{array}{l}
\text { gravitational } \\
\text { potential } \\
\text { energy }
\end{array} \\
& U_{g}(r \rightarrow \infty)=0
\end{aligned}
$$

- acceleration due to gravity: $\left.g(r)=G \frac{\mu}{r^{2}}=\frac{F_{g}(r)}{m}\right\}$

$$
\left|F_{g}(r)\right|=G \frac{M m}{r^{2}}
$$

assuming that then in no other
force acting
\Rightarrow at Earth' \Rightarrow surface: $g\left(r_{\text {earth }}\right)=G \frac{\mu_{E}}{r_{E}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ force on ting $06 j$.

- Satellite motion/ orbital motion:

$$
V_{\text {orb }}=\sqrt{\frac{G \mu}{r_{0, b}}}\left\{\begin{array}{l}
\text { under influence of gravity }
\end{array} \rightarrow F_{g}(r)=3 n \frac{v^{2}}{r}\right.
$$

- escape speed:

- Note: Use $F_{g}=m g$ and $\Delta u g=m g$ by only for objects sear Earth's surface!

Where is the center of mass?

\rightarrow break in to small pieces whom COM you com "guess"
\rightarrow replace cacl piece by point mans at COM locations
\rightarrow evaluate COM furcallection of point mass
Note COM point reed not to be inside the object!

Today:

- Center of Mass
- Momentum

Center of mass

Center of Mass CoM
Consider a collection of (point) particles or an object with distributed mass:
 m,

$$
x_{\mathrm{COn}} \cdot m_{2}
$$

m_{3}
\Rightarrow Where is thCOM?

$$
\begin{aligned}
& x_{\text {COM }}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots}{m_{1}+m_{2}+\cdots}=\frac{\sum_{i} m_{i} x_{i}}{m_{\text {total }}}: \begin{array}{l}
\text { Solid oliact: } \\
\text { break in to small } \\
\text { man elements } d m:
\end{array} \\
& y_{\text {com }}=\frac{m_{1} y_{1}+m_{c} y_{2}+\ldots}{m_{1}+m_{2}+\ldots}=\frac{\sum_{i} m_{i} y_{i}}{m_{\text {total }}} ; x_{\text {com }}=\frac{1}{m_{\text {toil }}} \int x d m_{m} \\
& \text { in rector notation: }
\end{aligned}
$$

$$
\vec{r}_{\text {com }}=\frac{\sum_{i} m_{i} \cdot \vec{r}_{i}}{m_{\text {total }}}
$$

Where is the center of mass?

1 kg

A. between the masses, 2.5 m from each B. between the masses, 1 m from the small mass
C. between the masses, 1 m from the large mass
D. between the masses, 0.8 m from the large mass
E. at the large mass

$$
x_{\text {com }}=\frac{\sum_{i=1, \ldots} m_{i} x_{i}}{m_{t 0 t_{a 1}}}=\frac{1 k_{g} \cdot O_{m}+5 k_{j} \cdot 5_{m}}{\left(1 k_{g}+5 k_{j}\right)}=\frac{25}{6} m=4 \frac{1}{6} m
$$

-Why is the CoM useful?

$$
\frac{d \vec{r}_{i}}{d t}=\overrightarrow{v_{i}}
$$

$$
\begin{aligned}
& \vec{r}_{\text {COM }}=\frac{1}{m_{\text {total }}} \sum_{i} m_{i} \vec{r}_{i} \Rightarrow \vec{v}_{\text {cOM }}=\frac{d \vec{r}_{\text {Pom }}}{d t}=\frac{1}{m_{\text {total }}} \sum_{i} m_{i} \cdot \vec{v}_{i} \\
& \Rightarrow \vec{a}_{\text {COM }}=\frac{d \vec{v}_{i}}{d t}=\vec{a}_{\text {cOM }} \\
& \sum m_{i} \\
& \sum m_{i} \vec{a}_{i} \leftarrow \text { acceleration of }
\end{aligned}
$$

$$
\Rightarrow \vec{a}_{\text {com }}=\frac{d \vec{r}_{c o n}}{d t}=\frac{1}{m_{m_{\text {total }}}} \sum_{i}^{\frac{a v_{i}}{d t}=\vec{a}_{i}} \vec{m}_{i} \vec{a}_{i} \leftarrow \text { acceleration of }
$$

use NII for $i^{t h}$ particle:

$$
\sum \vec{F}_{\text {onitl}}=\underbrace{\overrightarrow{F_{n+t, i}^{\prime}}}=m_{i} \vec{a}_{i}
$$

particle $\underbrace{}_{\text {net fore on its particle }}$

$$
\Rightarrow \sum_{i} \vec{F}_{\text {net, } i}=m_{\text {total }} \cdot \vec{a}_{\text {con }}=\vec{F}_{\text {net, } 1}+\vec{F}_{\text {net, } 2}+\ldots
$$

$$
\sum_{i} \vec{F}_{\text {net }, i}=\vec{F}_{\text {net }, 1}^{\prime}+\vec{F}_{\text {mel, } 2^{*} \ldots}^{\prime}=\sum \vec{F}_{\text {onpaticl }}^{\prime}+\sum \vec{F}_{\text {onparictiz }}
$$

- forces on $i^{t h}$ particle:
- forces from outside of system of particles (external fores)
- fores due to offer particles in the system (internal fores)
\Rightarrow internal fora will be NIIT interaction partner with fore on other particles

$$
\vec{F}_{10 n 2}=-\vec{F}_{200_{1}}
$$

\Rightarrow These pairs cancel out in sum $\sum_{i} \overrightarrow{F_{n e r}}$:
\Rightarrow only fores left are external forts

$$
\Rightarrow \quad \sum_{i} \vec{F}_{\text {net }, i}=\sum \vec{F}_{\text {Pit }} \text { on syoten }
$$

$$
\begin{aligned}
& \Rightarrow \vec{F}_{\text {net, ext }}=\sum \vec{F}_{\substack{\text { ext on } \\
\text { int em }}}=m_{\text {total }} \vec{a}_{\text {con }} \left\lvert\, \begin{array}{l}
\text { wII for } \\
\begin{array}{l}
\text { system of } \\
\text { particle/ }
\end{array} \\
\text { compost }
\end{array}\right. \\
& \text {-The COM point of an object or syst object }
\end{aligned}
$$

\Rightarrow. The COM point of an object or system object of objects/paticls mows tronslationally as though its mans is concentrated at $\vec{r}_{\text {con }}$ and all external fores act thee!

- Trajectory of COM determined by net external force only!
- Parts of system may individevally undejo complicated motion (ob ject might rotate....)

- Special case:

$$
\left.\begin{array}{l}
\text { if } \sum \vec{F}_{\text {ext }}=\vec{F}_{\text {net, ext }}=0 \\
\Rightarrow \vec{a}_{\text {con }}=0 \Rightarrow \vec{V}_{\text {con }}=\text { cont }
\end{array}\right]\left\{\begin{array}{l}
\text { NI for } \\
\text { system of } \\
\text { particles }
\end{array}\right.
$$

A 9 m long boat with a mass of 100 kg floats frictionlessly on the water. The boat is initially at rest. A sailor of mass 50 kg walks from the back to the front of the boat.
before: How far does the sailor move relative to the water?

A 9 m long boat with a mass of 100 kg floats frictionlessly on the water. The boat is initially at rest. A sailor of mass 50 kg walks from the back to the front of the boat.

How far does the boat move relative to the water?
before:

$x_{\text {com, before }}=$

A. 0 m
B.) 3 m
C. 4.5 m
D. 6 m
$x_{\text {(om, }, \text { after }}=3 \mathrm{~m}$
$=\frac{50 u_{y}(\Delta x+9 m)+100 u_{y}(\Delta x+4.5 m)}{50 u_{y}+100 u_{y}}$ Solve for $\Delta x=-3$ m (mons to $\begin{array}{r}\text { left) } \\ \text { le }\end{array}$

Momentum:

$$
\begin{aligned}
& \binom{\text { Linear Momentum }}{\text { of a particle }}=\begin{array}{l}
\vec{p} \equiv m_{o b_{j}} \cdot \vec{V}_{\text {old }}^{j}
\end{array} \\
& V_{\text {vector! }} \\
& N \pi:>\vec{P}=\operatorname{kg} \frac{m}{s}=N \cdot s
\end{aligned}
$$

VII: $\sum \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t}=\frac{d \vec{p}}{d t} \quad$ (if $m=$ count)

$$
\begin{aligned}
& \Rightarrow \sum \vec{F}_{o n \text { object }}=\vec{F}_{\text {net, ob }}=\frac{d \vec{p}_{o b_{i}}}{d t}=\left(\begin{array}{l}
\text { rate of } \\
\text { change of } \\
\text { momentum }
\end{array}\right) \\
& \Rightarrow \text { If } \vec{F}_{\text {net }, 0 b_{j}}=0 \Rightarrow \vec{P}_{0 b_{j}}=\text { cost D } \\
& \text { (} \vec{a}=0 \Rightarrow \vec{r}=\text { cont } \rightarrow \vec{p}=\text { cost) }
\end{aligned}
$$

