Collisions
Lecture 25
For any collision: $\left.\vec{P}_{1, i}+\vec{P}_{2, i}=\vec{P}_{1, f}+\vec{P}_{2, f}\right\} \begin{aligned} & \text { Momentum is } \\ & \text { conserved } \\ & \text { (if } \sum \overrightarrow{F_{e x t}}=0 \text {) }\end{aligned}$
Case A: Elastic collision: $\left.\sum K_{i}=\sum K_{f}\right\}$ Kin. energy is
\Rightarrow speed of separation $=$ speed of approach
Case B: Inelastic collision: part of kinetic energy is lost

$$
\Rightarrow \sum K_{i}>\sum K_{f}
$$

special case: sticking collisions: $\quad V_{1, f}=V_{2, f}$ have largest possible loss in Kinetic energy
Case C: Superelastic collisions:

$$
\sum K_{i}<\sum K_{f}
$$

e.g. Compressed spring is released, objects explode during collision,...

A 0.1 kg mass with an initial speed of $1 \mathrm{~m} / \mathrm{s}$ collides with a 10 kg mass which is initially at rest, and sticks to it.

The speed of the two masses after the collision is approximately:

10 kg
A. $0 \mathrm{~m} / \mathrm{s}$
\square arrest
(B.) $0.01 \mathrm{~m} / \mathrm{s}$

凹
C. $0.02 \mathrm{~m} / \mathrm{s}$
$\prod_{A+B} \rightarrow V_{f}=$?
D. $0.5 \mathrm{~m} / \mathrm{s}$
E. $1 \mathrm{~m} / \mathrm{s}$
\Rightarrow Cons. of momentum:

$$
\begin{aligned}
& m_{A} V_{i, A}+\underbrace{m_{B} V_{i, P}}_{=O h_{B}}=\left(m_{A}+m_{B}\right) V_{f} \\
& \Rightarrow V_{f}=\frac{m_{A}}{m_{A}+m_{B}} V_{i, A}=\frac{0.1 k_{f}}{10 k_{j}+0.14 \mathrm{f}} \cdot 1 \frac{\mathrm{~m}}{\mathrm{~s}} \approx \frac{1}{100} 1 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Today:

- Sticking collisions
- Dinosaurs
- Rotational Motion
- Torque

Case B- Inelastic Collision :
Momentum is conserved, but kinetic energy is sot! $\left.\sum K_{i}>\sum J_{f} \Rightarrow \Delta K_{\text {loss }}=J P_{i, \text { eutal }} Y_{f, t u t a l}>0\right] \begin{aligned} & \text { kinetic energy } \\ & \text { is lost }\end{aligned}$
Special case i Stiching Collisions ("maximum inelastic collisions")
before:, $1 \xrightarrow{V_{i, 1}} V_{i, 2}^{V_{i}}$ cons. of momentum

\Rightarrow Sticking collisions give the maximum posill ton of total Kinetic enejy o orion that is allowed by cons. of total momentum!

Proof:
conservation of momentum in general collision:

$$
\begin{aligned}
& m_{1} v_{i, 1}+m_{2} v_{i, 2}=m_{1} v_{f, 1}+m_{2} v_{f, 2} \\
& \Rightarrow V_{f_{1} 2}=\frac{m_{1}}{m_{2}}\left(V_{i, 1}-V_{f_{1} 1}\right)+V_{i, 2} \\
& \Delta K_{\text {total }}=K_{i, 1}+K_{i, 2}-K_{f, 1}-K_{f, 2}=\frac{1}{2} m, V_{i, 1}^{2}+\frac{1}{2} m_{2} V_{i, 2}{ }^{2} V_{2} \text { insert } \\
& -\frac{1}{2} m_{1} v_{f_{1}}^{2}-\frac{1}{2} m_{2} v_{f_{1} 2}^{2} \\
& \Rightarrow \Delta k_{t_{0} t_{a}}=\frac{1}{2} m_{1} v_{i, 1}^{2}+\frac{1}{2} m_{2} v_{i, 2}^{2}-\frac{1}{2} m_{1} V_{f_{1},}^{2}-\frac{1}{2} m_{2}\left[\frac{m_{1}}{m_{2}}\left(V_{i, 1}-v_{f_{1}, 1}\right)+v_{i, 2}\right]^{2}
\end{aligned}
$$

\Rightarrow find maximum of $\Delta K_{\text {total }}\left(V_{1, f}\right)$

$$
\begin{aligned}
& \frac{d\left(\Delta K_{\text {total }}\right)}{d V_{f, 1}} \stackrel{!}{=} 0=-m_{1} V_{f, 1}-\frac{1}{2} m_{2} 2\left[\frac{m_{1}}{m_{2}}\left(V_{i, 1}-V_{f, 1}\right)+V_{i, 2}\right]\left(-\frac{m_{1}}{m_{2}}\right) \\
& \left.=-m_{1} V_{f, 1}+\frac{m_{1}^{2}}{m_{2}}\left(V_{i, 1}-V_{f, 1}\right)+m_{1} V_{i, 2} \right\rvert\, \cdot \frac{m_{2}}{m_{1}} \\
& \Rightarrow m_{2} v_{f, 1}+m_{1} V_{i, 1}-m_{1} V_{f, 1}+m_{2} V_{i, 2}=0 \\
&\left.\Rightarrow m_{1} v_{i, 1}+m_{2} V_{i, 2}=\left(m_{1,1}+m_{2}\right) V_{f, 1}\right\} \text { this is true } \\
& \Rightarrow \text { for ticking } \\
& \Rightarrow V_{f, 1}=V_{f, 2} \text { ? }
\end{aligned}
$$

Example: sticking collision with stationary tappet ${ }^{C}$

$$
\begin{aligned}
& v_{f}=\frac{m_{1}}{m_{1}+m_{2}} v_{i,} \\
& \left.\Rightarrow \frac{\Delta J r_{103}}{\sum J r_{i}}=\frac{\frac{1}{2} m_{1} v_{i, 1}^{2}-\frac{1}{2}\left(m_{1}+m_{r}\right) v_{f}^{2}}{\frac{1}{2} m_{1} v_{i, 1}{ }^{2}+0}=\frac{m_{2}}{m_{1}+m_{2}}\right\} 0 \ldots .1 \\
& \Rightarrow \text { if } m_{1} \ll m_{2} \\
& \left.\frac{\Delta F_{i o n}}{\bar{\sum} H_{i}}=\frac{m_{2}}{m_{1}+x_{2}}=1\right\} \begin{array}{l}
\text { all Kinetic } \\
\ln _{\text {led }}
\end{array} \\
& \Rightarrow \text { if } m_{1}=m_{2}: \quad \frac{\Delta Y_{1} m_{3}}{\sum K_{i}}=\frac{1}{2} \\
& \Rightarrow \text { if } m_{1} \gg m_{2} \quad \frac{\Delta r_{103}}{\tau \int_{i}}=\frac{m_{2}}{m_{1}+m_{2}} \rightarrow \text { ting }
\end{aligned}
$$

How the Dinosaurs Died

Gravitational Map of Buried Crater:

~65 million years old
$\sim 180 \mathrm{~km}$ in diameter

- caused by impact of asteroid or comet
$\sim 10 \mathrm{~km}$ in diameter

Chicxulub asteroid/comet numbers:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{a}}=5 \mathrm{~km} \\
& \mathrm{~m}_{\mathrm{a}}=(4 / 3) \pi \mathrm{R}_{\mathrm{a}}^{3} \rho_{\mathrm{a}} \approx 3 \times 10^{15} \mathrm{~kg} \\
& \mathrm{v}_{\mathrm{a}, \mathrm{I}}=20 \mathrm{~km} / \mathrm{s} \\
& \Rightarrow \mathrm{~K}_{\mathrm{a}, \mathrm{i}}=(\mathbf{1} / \mathbf{2}) \mathrm{m}_{\mathrm{a}} \mathbf{v}_{\mathrm{a}, \mathrm{i}}{ }^{2} \approx 6 \times 10^{23} \mathrm{~J}
\end{aligned}
$$

Assume sticking collision with Earth:

$$
m_{a} v_{a, i}+m_{\text {earth }}(0)=\left(m_{a}+m_{\text {earth }}\right) v_{f}
$$

Since $\mathrm{m}_{\text {earth }} \approx 6 \times 10^{24} \mathrm{~kg} \gg \mathrm{~m}_{\mathrm{a}}$,

$$
\begin{aligned}
& V_{f, e a r t h} \approx\left(m_{a} / m_{\text {earth }}\right) v_{a, i} \approx 1 \times 10^{-5} \mathrm{~m} / \mathrm{s}! \\
& K_{f} \approx(1 / 2) \mathrm{m}_{\text {earth }} \mathrm{V}_{\mathrm{f}}^{2} \approx 6 \times 10^{14} \mathrm{~J} \ll \mathrm{~K}_{\mathrm{a}, \mathrm{i}}
\end{aligned}
$$

$\therefore \Delta \mathrm{K}$

$$
\begin{array}{ll}
= & K_{a, i}-K_{\mathrm{f}} \approx 6 \times 10^{23} \mathrm{~J} \\
= & \text { energy released upon impact }
\end{array}
$$

Mohawk, Eniwetok
Atoll
July 1956
350 kilotons
1 Megaton $=4 \cdot 10^{15} \mathrm{~J}$

$$
\begin{aligned}
& \therefore \Delta \mathrm{K}=\mathrm{K}_{\mathrm{a}, \mathrm{i}}-\mathrm{K}_{\mathrm{f}} \approx 6 \times 10^{23} \mathrm{~J} \\
&=\text { energy released upon impact } \\
&=\quad 1.5 \times 10^{8} \text { Megatons }
\end{aligned}
$$

$\Delta K \sim 10^{10}$ energy released at Hiroshima ~ 10^{4} energy of world's nuclear arsenals
"The asteroid or comet "punched right through the Earth's crust, releasing molten magma from the mantle beneath. Extraordinary earthquakes tore at every seismic fault in the world as the crust buckled. Waves kilometers high crashed across the American continents. The blast threw billions of tons of dust and molten rock out into space. As the stuff fell back to earth the heat of its re-entry made the sky glow like a furnace, hot enough to light forest fires all around the world. When these burnt out, all was blackness; the dust hung in the sky like a wall of sooty brick. Eventually the sun returned, its warmth intensified. The comet had hit a seabed covered in limestone, and vaporized it by the cubic kilometer. That let trillions of tons of carbon dioxide into the atmosphere, enough to increase the temperature by perhaps $10^{\circ} \mathrm{C}$."
"The plankton in the sea died. So did most other marine creatures, except those safe in the depths. The terrestrial plants, able to stay dormant as seeds, did better. But no land animal that weighed more than 30 kg (70 lb) survived. The last dinosaurs were gone, along with 60% of all the species on the planet. A new geological era had arrived: the Cretaceous had given way to the Tertiary."

The Economist
September 11, 1993

Un to now:

at rest
\Rightarrow guaranties translational equilibrium
But: Objects might rotate!

\rightarrow rotate!
\Rightarrow rotation depend on where th forces are acting (ie "point of action" of \vec{F})
$\sum \vec{F}_{\text {ext }}=0 \Rightarrow$ no translational motion of COM point

Describing Rotational Motion

- position $x(t)$
$[x]=m$
- displace men:
$\Delta x=x\left(t_{2}\right)-x\left(t_{1}\right)$
- velocity:
$v=\frac{d x}{d t}$
$[v]=\frac{m}{s}$

Rotational Motion

$$
\begin{aligned}
& \vec{r} \cdot \vec{s}+\theta \text { direction } \\
& \therefore \theta=0 \\
& S=\operatorname{arc} \text { length }=\theta \cdot r
\end{aligned}
$$

- Angular position: $\theta(t)=\frac{s(t)}{r}$
- Angular dis playment:

$$
[\theta]=\text { "rad" not deg! }
$$

$$
\Delta \theta=\overline{\theta\left(t_{2}\right)}-\theta\left(t_{1}\right)=\theta_{2}-\theta_{1}
$$

- Angular velocib:

$$
\begin{aligned}
& \omega=\frac{d \theta}{d t}=\binom{\text { rate of change }}{\text { of } \theta \text { wot. time }} \quad[\omega]=\frac{\text { rod" }}{5} \\
& \omega=\frac{d \theta}{d t}=\frac{1}{r} \frac{d s}{d t}=\frac{V}{r} \stackrel{\not 匕}{=} \frac{1}{r} \frac{2 \pi r}{T}=\frac{2 \pi}{T} T_{\substack{ \\
\hline}}^{\text {rotational }} \begin{array}{l}
\text { period }
\end{array}
\end{aligned}
$$

What is the angular velocity ω of the minute hand of a clock?

$$
\begin{aligned}
\text { angular velocity) } & =\omega=\frac{\nu}{r}=\frac{2 \pi}{T} \\
& =\frac{2 \pi}{60 \cdot 60 \mathrm{~s}}
\end{aligned} \quad \begin{aligned}
& \omega(\text { in rad } / \mathrm{s})=? \\
& \\
& \\
& \\
& =\frac{2 \pi}{3660 \mathrm{~s}}
\end{aligned} \quad \begin{array}{ll}
\text { A. } 1 / 60 \\
\text { B. } 2 \pi / 60 \\
\text { C. } 1 / 3600
\end{array}
$$

D. $2 \pi / 3600$

\Rightarrow smaller T
$\Rightarrow \sin \| l e \alpha$

larger per pedicular diston φ from A bo point of action of \vec{F}
\Rightarrow lager "momentumarn"
\Rightarrow lager torque i

\Rightarrow large ans. accel. α
Too \vec{F} about $A=0$ her $\left(r_{1}=0\right)$
\Rightarrow divation of \vec{F} is important.

\perp distance from $\{$ "momentum arm"

