Recap: Rotational Motion

Translation

Translation (motion of com)
Position $\quad X$
Displacement ΔX
velocity $\quad v=\frac{d x}{d t}$
acceleration $a=\frac{d v}{d t}$

Forces cause acceleration of center of mass of object.
point of

$$
\text { Torque }=\tau=F \cdot r_{\perp}=F_{\lambda} \cdot r
$$

perpendicular comp.

= momentum, i

- Aline of action of \vec{E}
(in direction of \vec{F}, and parsing through point of action of \vec{F})

$$
\bar{T}_{\substack{\text { of } \\ \text { about axis A }}}=F_{\perp} r=F r \sin \phi=F \underbrace{r_{\perp}}_{\perp}
$$

"momenturn arm"
of \vec{F} about axis A
$=\frac{1}{1}$ distance from axis A to the line of action of force \vec{F}

Note:

- τ of given force \vec{F} der end on position of axis and the point of action of \vec{F}
- Torque is a vector! For 2.0 problems:
τ has a sign ! \Rightarrow Forces that would produce $\rangle^{+\lambda}$ counter - clock wise rotations about chooser avis of rotation produce positive tongue. (same convention as for $+\theta$ direction)
$-[\overline{\bar{c}}]=N_{3}$ (same as enejgibut don't use $D=N_{m}$ for torgu, only for en ergy/work)

Which force exerts the largest magnitude torque about the

$\tau=F r \sin \phi=F_{\perp} r=F r_{\perp} F_{3}=40 \mathrm{~N}$
A. F1
$\Rightarrow \tau_{\text {about } A}=F_{1} \cdot l_{m}=100 \mathrm{Nm}_{\mathrm{m}}$
B. F2
$\tau_{2 \text { about } A}=F_{2} \cdot 2_{2 m} \cdot \sin 30^{\circ}=100 \mathrm{~N} \cdot 2 \mathrm{~m} \cdot \frac{1}{2}=100 \mathrm{~N}$
C. F3
$\tau_{3 \text { about } A}=-40 \mathrm{~N} \cdot 3 \mathrm{~m}=-120 \mathrm{Nm}$
D. F4
E. F1 and F2
τ_{4} about $A=F_{4} \cdot 4 \mathrm{~m} \cdot \sin 0^{\circ}=0 \quad\left(\gamma_{1}=0\right)$

What is the net torque exerted by the 4 forces about the point A?
Assume counterclockwise torques are positive. $\mathrm{F}_{1}=100 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{F}_{2}=100 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \tau \quad=\tau \quad F_{3}=40 \mathrm{~N} \\
& \tau_{\text {net }}=\sum \tau_{a b_{\text {out }}}=\tau_{1}+\tau_{2}=40 N \tau_{3}+\tau_{4} \\
& =100 \mathrm{Nm}+100 \mathrm{Nm} \mathrm{~N}^{-120 \mathrm{Nm}+0} \\
& =+80 \mathrm{~m}
\end{aligned}
$$

A. 80 N m
B. 100 N m
C. 180 N m
D. 200 Nm
E. None of the above

What is the net torque exerted by the 4 forces about the point \mathbf{B} ? Assume counterclockwise torques are positive.

$$
\text { B. - } 60 \text { N m }
$$

$$
\text { C. } 140 \mathrm{~N} \mathrm{~m}
$$

$$
\begin{aligned}
& \tau_{1 \text { about } B}=-100 \mathrm{~N} \cdot 1_{\mathrm{m}}=-100, \mathrm{~F}_{\mathrm{s}_{3}}=40 \mathrm{~N} \\
& \tau_{2 \text { aboulb }}=\left(100 \mathrm{~N} \cdot \mathrm{O}_{\mathrm{N}}\right)=0 \quad(r=0) \\
& \tau_{\text {, about } B}=-40 \mathrm{~N} \cdot 1 \mathrm{~m}=-40 \mathrm{Nm} \\
& \tau_{4 \text { about } B}=0\left(r_{\perp} 0\right) \\
& \Rightarrow \sum \tau_{\text {bant } 13}=-140 \mathrm{Nm}_{\mathrm{m}}
\end{aligned}
$$

- NII for translational motion of COM point.

$$
\vec{F}_{\text {net, ext }}=\sum \vec{F}_{\text {ext }}=m \vec{a}_{\text {con }}
$$

$$
F \leftrightarrow \tau
$$

- NII for rotational motion:

$$
a \leftrightarrow \alpha
$$

$$
m \leftrightarrow I
$$

$$
\tau_{\begin{array}{c}
\text { net } \\
a b_{0 \text { ont }} \\
\text { avion }
\end{array}}=\sum \tau_{\text {about axe } A}=I \alpha
$$

angular acceleration
I: "moment of inertia" about axis A of the object about axis A (depends on position

$$
\text { and orientation of avs } A \text {) }
$$

$$
\begin{aligned}
& {[I]=\frac{[\tau]}{[\alpha]}} \\
& =\frac{N m}{1 / s^{2}}=\frac{K_{j} m^{2} / s^{2}}{1 / s^{2}} \\
& =K_{g} z_{m^{2}}
\end{aligned}
$$

"Proof" of $\tau_{\text {net }}=I \alpha$ for point mas:

Note:

$$
\left|a_{11}\right|=\frac{v_{r}^{2}}{r}
$$

$$
\begin{aligned}
& \tau_{\text {net }}=F_{\text {net }, \frac{1}{N}} \cdot r=m a_{\perp} r \\
& \text { use vIII: } \vec{F}_{\text {ret }}=m \vec{a} \Rightarrow F_{\perp}=m a_{\perp} \\
& a_{\perp t_{0} \vec{r}}=\frac{d v_{\perp}}{d t}=\frac{d}{d t}(\omega r)=r \frac{d w}{d t}=r \alpha \\
& \omega=\frac{V_{1}}{r} \Rightarrow V_{\perp}=\omega_{r}
\end{aligned}
$$

for cire.
motion
$\Rightarrow \tau_{\text {net }}=3 a_{\perp} r$

$$
\begin{aligned}
& =m(r \alpha) r \\
& =m r^{2} \alpha \\
& =I \alpha
\end{aligned}
$$

with $I=m r^{2}$ for point mans

Moment of Inertia I:
$\left.I_{\substack{\text { about } A}}=m r^{2}\right\}$ point mass

$I_{\text {about }}=\int{\underset{\tau}{r}}_{r^{2} d m}^{r: p e \text { phadicula dist an }} \begin{gathered}\text { for rigid }\end{gathered}$
from rotation axes
Note: I depends on

- mars and how it is distributed
- axis abut which we are considering rotation!

$I=m_{\text {hoon }} \cdot 19$	$I_{\text {aboutcenten }}=\frac{1}{2} m_{\text {disc }} \cdot R^{2}$		
thin hoop or ring of radius R \& mass M :	thick ring of inner radius $R 1$, outer radius R2, and mass M :	solid cylinder or disc of radius R and mass M :	flat plate with sides of length A and B and mass M :
M * $\mathrm{R}^{\wedge} 2$	$\mathrm{M}^{*}\left(\mathrm{R}^{\wedge}{ }^{\text {2 }}\right.$ + R2^2)/2	($\left.\mathrm{M}^{*} \mathrm{R}^{\wedge} 2\right) / 2$	$\mathrm{M}^{*}\left(\mathrm{~A}^{\wedge} 2+\mathrm{B}^{\wedge} 2\right) / 12$
solid sphere of radius R and mass M :	thin-walled hollow sphere of radius R \& mass M:	slender rod of length L and mass M, spinning around center:	slender rod of length L and mass M , spinning around end:
$(2 / 5)^{*} \mathrm{M}^{*} \mathrm{R}^{\wedge} 2$	$(2 / 3)^{*} \mathrm{M}^{*} \mathrm{R}^{\wedge} 2$	($\left.\mathrm{M}^{*} \mathrm{~L}^{\wedge} 2\right) / 12$	($\left.\mathrm{M}^{*} \mathrm{~L}^{\wedge} 2\right) / 3$

Kinetic Energy and Momentum

IDling. motion	rotation of rigid object about fired axis A		
- Kinetic energy:			
$J_{P}=\frac{1}{2} \mathrm{~m} v^{2}$		\quad	$T=\frac{1}{2} I_{\text {about } A} \omega^{2}$
---:			

- Linear momentum

$$
\vec{p}=m \vec{v}
$$

Conserved if

$$
\vec{F}_{\text {net, ext }}=\sum \vec{F}_{\text {ext }}=0
$$ rotation of rigid object about fired axis A

- Kinetic enejy from rotation:

$$
Y_{R}=\frac{1}{2} I_{a b_{\text {out }} A} \omega^{2}
$$

- Angular momentum L

$$
\begin{aligned}
& L=I w \\
& \begin{array}{l}
\text { angular mo men tum is conserved } \\
\text { if } \\
\tau_{\text {net }}=\tau \tau_{\text {ext }}=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& m \leftrightarrow I \\
& v \leftrightarrow \omega \\
& F \leftrightarrow \tau
\end{aligned}
$$

Requirements of Equi. $1 . b_{\text {rian : }}$
(1) $\vec{a}_{\text {con }}=0 \Leftrightarrow \bar{\sum}_{\vec{l}} \vec{l}_{\text {et }}=m \vec{a}_{\text {com }}=0$
for tronslational equilibrium
for otatic equilibricm: $\quad \vec{V}_{i, c o m}=0$
(2) $\alpha_{\text {about anz }}=0 \Leftrightarrow \sum \tau_{\text {ext, } b_{\text {an }} x}=I \alpha=0$
axi, axs A
for rotational equilibriem
for stakic equilibrium: $\quad \omega_{i}=0$
for any axis youch oose?

Solving- for Equilibrium

$$
\sum \vec{F}_{\text {ext }}=0 \quad \sum \tau_{\substack{a b o u t ~ a x i s \\ a x y}}=0
$$

