Lecture 29 · Elasticity: stress & strain - tension/compression: - bending: L+OL $\frac{F}{A} = g \frac{\delta x}{I}$ - (t/A) max = ultimate strength = max strengthat
can be applied · Thermal Equilibrium: AB

- no net heat flow between objects
- same temperature TA=TB

Today:

- Thermal expansion
- Heat energy
- Latent heat
- Thermal conduction

· Thermal Expansion:

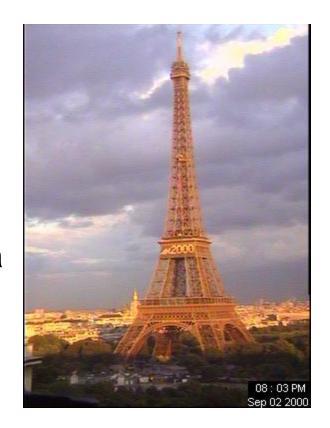
temperatur -> Linear ex parsion: coefficient fractional of linear change in expansion 1 Con th [一] = 「十] = 十 (nisete) - d depends on => applies to every linear material type dimension of object? - combe >0 orco

On a cold winter day with **T=-10** °**C**, the Eiffel Tower is **300 m** tall.

How tall is it on a hot summer day when T=40 °C?

The Eiffel Tower is made from steel with a thermal expansion coefficient

$$\alpha = 11 \times 10^{-6} / K$$
.


$$\Delta L = \alpha \Delta T$$

$$\Delta T = 40^{\circ}C - (-10^{\circ}C)$$

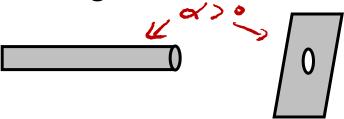
$$= 50k$$

$$= 11 \cdot 15^{\circ}/k \cdot 50k \cdot 300n$$

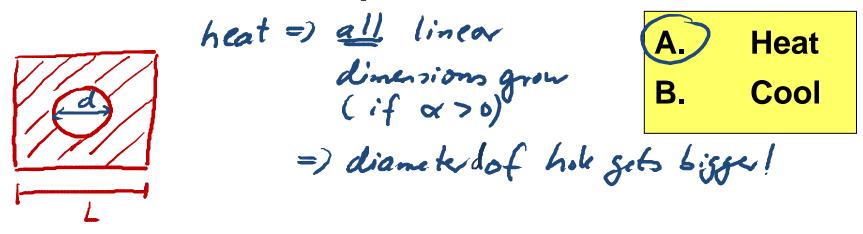
$$= 0.16 \cdot 2$$

300.001 m

300.16 m В.

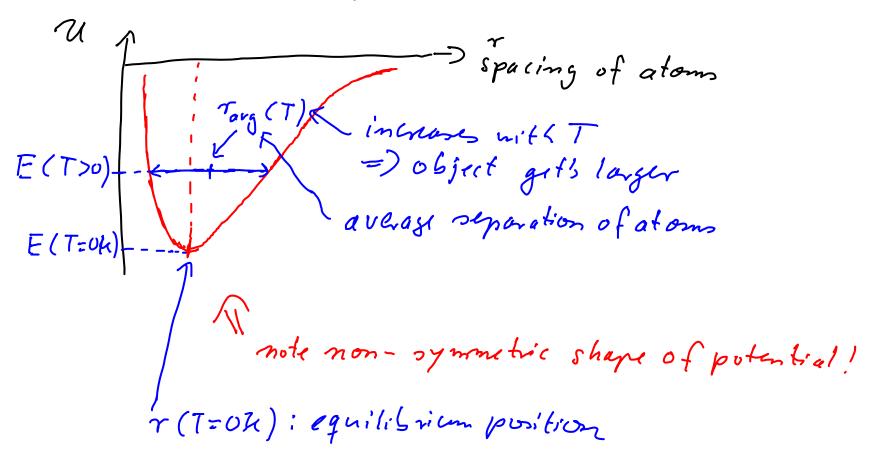

316 m

D. 420 m


Demoi Bimetal strip

= used in thermostat...

A **cylindrical rod** is just **slightly too large** to fit through a circular **hole**.



If you want the rod to fit through the hole, should you heat the plate or cool it?

Why do objects expand?

-) potential energy between a pair of atoms:

-> Volume Expansion:

$$\frac{\Delta V}{V} = \beta \Delta T$$
Coefficient of volume expansion
$$\beta = 3\alpha$$

Note: In general, $\alpha = \alpha(T)$, $\beta = \beta(T)$ =) above equations only valid for small ΔT =) α , $\beta \approx const$ -> Also big change in whome of object by phase transitions:

Example: water - ice

-> Heat Energy Q:

 $\begin{array}{c|c} A & B \\ T_A > T_B \\ \hline Q \end{array}$

when IDTI> 0 between two objects heat energy Q will be transferred between them until DT->0

[Q]=J

=) Heat energy required to change the temperature of an object from Ti to Ts?

Q ox (Ts-Ti) = DT

Q > 0: heat energy is transferred to object

Q < 0 : heat energy is transferred from object

Specific Heat c:

Substance	c/J kg ⁻¹ K ⁻¹	Substance	c/J kg ⁻¹ K ⁻¹
Aluminium	900	Ice	2100
Iron/steel	450	Wood	1700
Copper	390	Nylon	1700
Brass	380	Rubber	1700
Zinc	380	Marble	880
Silver	230	Concrete	850
Mercury	140	Granite	840
Tungsten	135	Sand	800
Platinum	130	Glass	670
Lead	130	Carbon	500
Hydrogen	14000	Ethanol	2400
Air	718	Paraffin	2100
Nitrogen	1040	Water	4186
Steam	2000	Sea water	3900

-> Heat of Phase Transition:

a that must be added at constant T to convert a substance from one phase to another. Example: Dee -> water ook as to

- Solid E-Liquid

 at TF, Ty

 fusion melting
- at Tv, Tb
 rapor boiling

 $Q_{s\rightarrow l} = L_F \cdot m \quad \text{onto}$ $Q_{l\rightarrow s} = -Q_{s\rightarrow l}$ Latent heat of fusion $\Gamma L_F J = 7/kg$

QL-1g = Lv·m } Qg-, L=-Q2->g Latent heat of vaporization $\int_{C} \frac{\sqrt{4190}}{\sqrt{49}} \int_{R} \frac{\sqrt{49}}{\sqrt{49}} \int_{R} \frac{\sqrt{49}}{\sqrt{4$

LV >> LF: Dince more bonds broken

H-bonding in water

Suppose that it takes an amount of heat Q to bring a pot of water initially at 20 °C to a boil.

How much additional heat must you add to boil all water away?

c = specific heat of water

 L_v = latent heat of vaporization

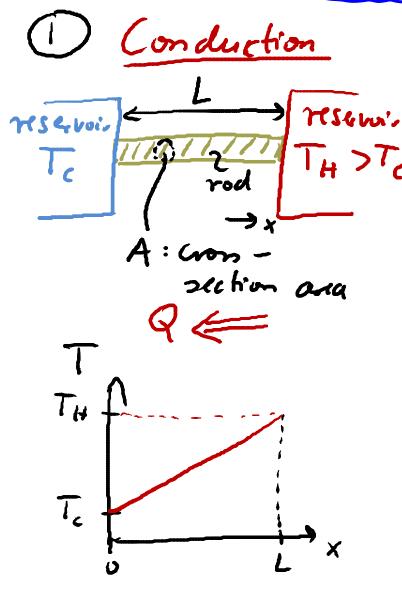
$$Q (20°C-100°C) = c m \Delta T$$

$$\Delta T = 100°C - 20°C = 80K$$

$$=) m = \frac{Q}{(80K)}$$

$$Q = L_V m = L_V \frac{1}{(80K)}$$
all when into voper
$$= 6.7$$
Sor walk

Additional heat =


A.
$$Q \times L_v$$

B.
$$Q \times L_v / c$$

$$\mathbb{C}$$
 Q × L_v / (c × 80°)

D.
$$Q \times L_v / (c \times 100^\circ)$$

-> Heat Transfer Mechanismo:

direct physical contact - no transfer/motion of man in conduction - assume steady state (wait long enough) =) all 7's and T-profiles are constant => no heat energy goes into heating up objects =) heat enery Q that enters at TH leaves at Tc

$$P \propto \frac{A}{L} (T_A - T_c)$$

=)
$$P = 32 \frac{A}{L} (T_H - T_c)$$
 in conduction

Material	Thermal conductivity <i>K</i> W/(m-K) at 25C	
Air	0.025	
Wood	0.04 - 0.4	
Alcohol or oil	0.15	
Soil	0.15	
Rubber	0.16	
Epoxy (unfilled)	0.19	
Water (liquid)	0.6	
Glass	1.1	
Ice	2	
Stainless steel	15	
Lead	35.3	
Copper	401	
Silver	429	
Diamond	900 – 2320	