Recap

- Elasticity: stress α strain \mathbb{L}^{*} young'o modulus
- tension/compression:

$$
\left.\begin{aligned}
& \frac{F}{A}=E \frac{\Delta L}{L} \\
& \frac{F}{A}=B \frac{\Delta y}{L} \\
& \frac{F}{A}=g \frac{\Delta x}{L}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { for } \\
& \text { small } \\
& \text { strains }
\end{aligned}
$$

- $(F / A)_{\text {max }}=$ ultimate strength $=$ max stress that can be applied
- Thermal Equilibrium: $A D B$
- no net heat flow between objects
- same temperature $T_{A}=T_{B}$

Today:

- Thermal expansion
- Heat energy
- Latent heat
- Thermal conduction

- Thermal Exponsion:
\rightarrow Linear expamion:
at T

\Rightarrow appliesto evey linear
dimension of ofject?
temprature change

$-\alpha$ depend on matrial type
- conbe >0 or <0

On a cold winter day with $\mathbf{T}=-10^{\circ} \mathrm{C}$, the Eiffel Tower is $\mathbf{3 0 0} \mathbf{m}$ tall.

How tall is it on a hot summer day when

$$
\mathrm{T}=40^{\circ} \mathrm{C} ?
$$

The Eiffel Tower is made from steel with a thermal expansion coefficient

$$
\frac{\Delta L}{L}=\alpha \Delta T
$$

$$
\alpha=11 \times 10^{-6} / \mathrm{K} .
$$

$$
\begin{gathered}
L \\
\Rightarrow \Delta L=\alpha \Delta T L
\end{gathered}
$$

$$
=11 \cdot 15 / \mathrm{k} \cdot 50 \mathrm{k} \cdot 300 \mathrm{~m}
$$

$$
=0.162
$$

$$
\Rightarrow L(40 \%)=\angle\left(-10^{\circ} 0\right)+\Phi L
$$

$$
=300 m+0.16 \mathrm{~m}
$$

A.	300.001 m
B.	300.16 m
C.	316 m
D.	420 m

Demo: Bimetal strip

A cylindrical rod is just slightly too large to fit through a circular hole.

If you want the rod to fit through the hole, should you heat the plate or cool it?

Why do objects expand?
\rightarrow potential energy bitweenopair of atoms:

\rightarrow Volume Expansion:

$$
\frac{\Delta V}{V}=\beta \Delta T
$$

Coefficient of volume expansion

$$
\beta=3 \alpha
$$

Note: In geneal, $\alpha=\alpha(T), \beta=\beta(T)$
\Rightarrow above equations on valid for small $D T$

$$
\Rightarrow \alpha_{1} \beta \times \cos t
$$

\rightarrow Also big changs in volume of object by phase transition:

Example: water \rightarrow ice

\rightarrow Heat Energy Q:
A B when $|\Delta T|>0$ between two objects heat energy Q will be transferred
$T_{A}>T_{B}$ between them until $\Delta T \rightarrow 0$
$\Rightarrow \quad[Q]=I$
\Rightarrow Heat en engr required to change the temperature of an object from T_{i} to T_{f} ?

$$
Q \propto\left(T_{f}-T_{i}\right)=\Delta T
$$

$Q>0$: heat ency, transferred to object
$Q<0$: heat ency is transferred from object

$$
\begin{aligned}
& \Rightarrow Q=C\left(T_{f}-T_{i}\right)=C \Delta T \\
& \uparrow \quad{ }^{\text {change! }} \\
& C_{1}=\text { heat capacity of the object } \\
& {\left[C_{1}\right]=J / k} \\
& C_{1} \propto m \Rightarrow C=C m^{\text {mas }} \\
& \Rightarrow Q=c m\left(T_{f}-T_{i}\right)=m c \Delta T \\
& c=\text { specific heat } \\
& \text { intrinsic property } \\
& \text { of material } \\
& {[C]=J /\left(J \cdot H_{g}\right)}
\end{aligned}
$$

Specific Heat c:

Substance	$c / J \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$	Substance	$c / \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$
Aluminium	900	Ice	2100
Iron/steel	450	Wood	1700
Copper	390	Nylon	1700
Brass	380	Rubber	1700
Zinc	380	Marble	880
Silver	230	Concrete	850
Mercury	140	Granite	840
Tungsten	135	Sand	800
Platinum	130	Glass	670
Lead	130	Carbon	500
Hydrogen	14000	Ethanol	2400
Air	718	Paraffin	2100
Nitrogen	1040	Water	4186
Steam	2000	Sea water	3900

\rightarrow Heat of Phase Transition:
Q that must be added at constant T to convert a substance from one phase to another. Exams: $J_{0}^{\circ} \xrightarrow[0^{\circ} \mathrm{C}]{Q_{s \rightarrow 2} 0^{\circ} \mathrm{C}}$

- Solid \leftrightarrow Liquid at T_{F}, T_{μ} fusion $\frac{\lambda}{\text { melting }}$
- Liquid \leftrightarrow gas/Lapor at T_{V}, T_{r}

$$
\left.Q_{S \rightarrow L}=L_{T} \cdot m^{K^{\text {man }}}\right\}_{Q_{L \rightarrow S}}^{\text {note: }}=-Q_{S \rightarrow L}
$$

Latent heat of fusion

$$
\left[L_{F}\right]=J / \mathrm{kg}
$$

$$
\left.Q_{L \rightarrow g}=L_{\lambda} \cdot m\right\} Q_{g-L L}=-Q_{L \rightarrow g}
$$

Latent heat of vaporization
for water:
$c=4190 \mathrm{y} / \mathrm{hg} k$ in liquid phase

$$
\left.\begin{array}{l}
L_{F}=333 \mathrm{ky} / \mathrm{kg} \\
L_{V}=2256 \mathrm{ky} / \mathrm{kg}
\end{array}\right\} \text { large! }
$$

$L_{V} \gg L_{F}$ i since more bonds broken H-bonding in water

Suppose that it takes an amount of heat Q to bring a pot of water initially at $20^{\circ} \mathrm{C}$ to a boil.

How much additional heat must you add to boil all water away?
c = specific heat of water
$L_{v}=$ latent heat of vaporization

$$
\begin{aligned}
& Q\left(20^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)=\mathrm{Cm} \underbrace{\Delta T} \\
& \Rightarrow m=\frac{Q}{C 80 k} \\
& Q_{\begin{array}{c}
\text { toll boil } \\
\text { inter vapor } \\
\text { into }
\end{array}}=L_{V} \stackrel{\downarrow}{m}=\underbrace{L_{v} \frac{1}{C 804} Q}_{\begin{array}{c}
\simeq 6.7 \\
\text { for wale }
\end{array}} \\
& \text { Additional heat }= \\
& \text { A. } \quad Q \times L_{v} \\
& \text { B. } \quad Q \times L_{v} / c \\
& \text { C. } Q \times L_{v} /\left(c \times 80^{\circ}\right) \\
& \text { D. } \quad Q \times L_{v} /\left(c \times 100^{\circ}\right)
\end{aligned}
$$

\rightarrow Heat Trams for Mechanisms:

\Rightarrow in stead, state:
Power $=P=\frac{\Delta Q}{\Delta t}=$ (rate of heat trans fe amount of heat any vertical plane in rod encesy trams ported per time internal Δt

$$
p \propto \frac{A}{L}\left(T_{A}-T_{c}\right)
$$

$$
\Rightarrow Y_{T} \frac{A}{L}\left(T_{H}-T_{C}\right) \text { in conduction }
$$

$[P]=W=\frac{J}{s} Y K=$ thermal conductivity material property

$$
[J K]=\frac{w}{m \cdot k}
$$

Material	Thermal conductivity K $\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$ at 25C
Air	0.025
Wood	$0.04-0.4$
Alcohol or oil	0.15
Soil	0.15
Rubber	0.16
Epoxy (unfilled)	0.19
Water (liquid)	0.6
Glass	1.1
Ice	2
Stainless steel	15
Lead	35.3
Copper	401
Silver	429
Diamond	$900-2320$

