Recap: Motion in 1-D
Lecture 3 curvature

velocity $=v=\frac{d x}{d t}=$ slope of $x-t$ graph
acceleration $=a=\frac{d v}{d t}=$ slope of $v-t$ graph

$$
a=\frac{d x^{2}}{d t^{2}}=\text { curvature of } x-t \operatorname{graph}
$$

$\Delta V=$ change of velocity $=V(t)-V(0)=\int^{t} a(t) d t$
initial position

$$
=\text { area "under" out graph }
$$

$$
\begin{aligned}
& \text { at } t=0 \\
& \Delta x=x(t)-x(0)=\int_{0}^{t} v(t) d t=a_{r e a} \text { "corder" } v-t \text { graph } \\
& \pi_{\text {change! }}
\end{aligned}
$$

Today:

- 1-D motion with constant acceleration (a=const)
- Free fall
- How high is the Suspension Bridge above Fall Creek Gorge?
- Galileo
- Kitchen faucets
- Proportional reasoning

Cornell Suspension Bridge spanning Fall Creek

 How high is the bridge above the gorge floor?$$
h=?
$$

A. $\quad 15 \mathrm{~m}$ (50 feet)
B. $\quad 30 \mathrm{~m}(100$ feet $)$ C. 45 m (150 feet $)$ D. $\quad 60 \mathrm{~m}(200$ feet $)$
E. $\quad 65 \mathrm{~m}(250$ feet $)$

Special case: 1-D Motion with constant acceleration

$$
a=\text { cons }
$$

Exams's: free fall

$$
\begin{aligned}
|a| & =g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \approx 10 \mathrm{~m} / \mathrm{s}^{2} \mathrm{in} \mathrm{Phy} 2207
\end{aligned}
$$

Methode I: Integration:

$$
\begin{aligned}
& \text { ethode I: Integration: } \\
& \begin{aligned}
a(t)=a=\operatorname{con} t \Rightarrow \Delta V
\end{aligned}=v(t)-\underbrace{v(t=0)}_{\substack{i n i t i a l \\
\text { at } t=0}}=\int_{0}^{t} a d t=a \int_{0}^{t} d t \\
& =V_{0}
\end{aligned}=\underline{a t} .
$$

\Rightarrow (1) $\quad v(t)=v_{0}+a t$

$$
\text { at } t=0
$$

$$
\begin{aligned}
& \Delta x=x(t)-\underbrace{}_{\begin{array}{c}
x(t=0) \\
\text { initial parition }
\end{array} \int_{0}^{x_{0}} v(t) d t}=\int_{0}^{t}(\underbrace{v_{0}+a t}_{0}) d t \\
&=v_{0} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$\Rightarrow(2) \underset{\substack{i_{n i t i o l} \\ \text { position }}}{x_{0}+v_{0} \begin{array}{c}\text { inifial } \\ \text { velocity }\end{array}} \underset{v_{0} t+\frac{1}{2} a t^{2}}{x_{i}}$
\Rightarrow solve (1) for $t: \quad t=\frac{v(t)-v_{0}}{a}$ and insertinto (2)

$$
\Rightarrow 2 a\left(x(t)-x_{0}\right)=2 a \Delta x=V^{2}(t)-V_{0}^{2}
$$

\Rightarrow (3) $v^{2}(t)-v_{0}^{2}=2 a \Delta x$
\Rightarrow Note: Egu. (1). (2), (3) only for $a=$ const D (incl. $a=0$)

Methode II: gaphical
accel

$$
\begin{align*}
a=\text { area } & =\Delta v=v(t)-v_{0}=a t \\
& =v(t)=v_{0}+a t \tag{1}
\end{align*}
$$

Cornell Suspension Bridge spanning Fall Creek

use $|a|=g=10 \mathrm{~m} / \mathrm{s}^{2}$ for free fall
The time for a rock to drop from the Suspension Bridge to the floor of Fall Creek Gorge is measured to be $\sim 3 \mathrm{~s}$.

What is the rock's speed when it hits the ground?

The time for a rock to drop from the Suspension Bridge to the floor of Fall Creek Gorge is measured to be $\sim 3 \mathrm{~s}$.

How high is the bridge above the gorge floor?

Galileo is said to have dropped balls of different masses from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass (excluding the effect of air resistance).

Kitchen Faucets:

- $\mathrm{h}=$ height of faucet outlet above sink Assume $v_{\text {water }}$ at faucet outlet is ~ 0, and \sim same for all faucets (\Rightarrow same flow rate).
- Then $\mathrm{v}_{\text {water }}=\sqrt{2 g h}$ when it reaches the sink, so that
$\mathrm{v}_{\text {water }} \propto \sqrt{h}$ at sink.

$$
V(t)^{2}-v_{0}^{2}=2 a \Delta y
$$

$\mathrm{V}_{\text {water }} \propto \sqrt{h}$

Standard faucet:
$h \approx 15 \mathrm{~cm}$ (~ 6 inches)

Gooseneck faucet: $h \approx 30 \mathrm{~cm}$ (~ 12 inches)
\therefore At level of sink, $\frac{v_{\text {water, goose }}}{v_{\text {water }, \text { std }}}=\sqrt{\frac{h_{\text {goose }}}{h_{\text {std }}}} \approx \sqrt{2}$ \Rightarrow more splashing!

Suppose that the height of the Suspension Bridge were doubled.
By what multiplicative factor would the time for the rock to fall change?
(2)

$$
\begin{aligned}
& \Delta y=v_{0} t+\frac{1}{2} a t^{2} \\
&=0 \text { hae } \\
& \Delta y=\frac{1}{\frac{2}{2} a t^{2}} \text { cost here } \\
& \Delta y \propto t^{2} \Rightarrow \sqrt{\Delta y} \alpha t \\
& \Rightarrow t \propto \sqrt{\Delta y} \\
& \Rightarrow \frac{t(2 h)}{t(h)}=\sqrt{\frac{2 h}{h}}=\sqrt{2}
\end{aligned}
$$

$t(2 \mathrm{~h}) / t(\mathrm{~h})=$?
A. $1 / \sqrt{2}$
B. 1
C. $\sqrt{2}$

* 2
E. 4

Proportional Reasoning:
examples

$$
\left.\begin{array}{rl}
y=a x & \Rightarrow y \alpha x \\
y=a \sqrt{x} & \Rightarrow y \alpha \sqrt{x} \\
y=a x^{2} & \Rightarrow y \alpha x^{2}
\end{array}\right\} \begin{aligned}
& \text { what happens } \\
& \text { to y if youble } x ?
\end{aligned}
$$

General case: suppose $y=a x^{\beta} \Rightarrow y \propto x^{\beta}$
so $y_{1}=a x_{1}^{\beta} \quad y_{2}=a x_{2}^{\beta}$

$$
\Rightarrow \frac{y_{2}}{y_{1}}=\frac{a x_{2}^{\beta}}{a x_{1}^{\beta}}=\left(\frac{x_{2}}{x_{1}}\right)^{\beta}
$$

$\Rightarrow \frac{x_{2}}{x_{1}}=$ multiplicative factor by which x chaos
$\frac{y_{2}}{y_{1}}=$ multiplicative factor by which y clangs
\Rightarrow If $y \alpha x^{\beta}$, then if x change by a factor c, then y change by a factor c^{β}.

Note: (1) if $y=a x^{\beta}+b$
\Rightarrow con't use proportions!
(2)

$$
\begin{aligned}
& \text { if } z=\alpha x^{\alpha} y^{\beta} \\
& \Rightarrow \frac{z_{2}}{z_{1}}=\left(\frac{x_{2}}{x_{1}}\right)^{\alpha}\left(\frac{y_{2}}{y_{1}}\right)^{\beta}
\end{aligned}
$$

Suppose that the Suspension Bridge and gorge were transported to the Moon, where the acceleration due to gravity is $1 / 6$ that on Earth.

By what multiplicative factor would the time for a rock to fall to the bottom of the gorge change?

$$
\begin{aligned}
& \Delta y=v_{0} t+\frac{1}{2} a t^{2} \\
& \Delta y=\frac{1}{2} a t^{2} \Rightarrow t^{2}=\frac{2 \Delta y}{a} \\
& \Rightarrow t^{2} \propto \frac{1}{a} \\
& \Rightarrow t \propto \sqrt{\frac{1}{a}} \\
& \Rightarrow \frac{t_{\text {moon }}}{t_{\text {earl }}}=\sqrt{\frac{a_{\text {earle }}}{a_{\text {moon }}}}=\sqrt{\frac{g}{g / 6}} \\
& t \text { (Moon) / } t \text { (Earth) }=\text { ? } \\
& \text { A. } 1 / 6 \\
& \text { B. } 1 / \sqrt{6} \\
& \text { C. } 1 \\
& \text { (D. } \sqrt{6} \\
& \text { E. } 6 \\
& =\sqrt{6}
\end{aligned}
$$

Complicated Motions:
(1) What if:
 with $a=$ cost each
\Rightarrow Arris $a=$ cont analysis to each in tonal with $a=$ cont in dependurty
\Rightarrow use $\Delta v=$ area "under" $a-t$ graph to get $v-t$ gaps

(2) Gereral case:

\Rightarrow apply $a=$ const onalyois to eachinteral Δt
\Rightarrow then get sums

