Recap: Static Fluids

- In a Static liquid:


Recon: Static Fluids

- Buoy ant Force:


$$
\begin{aligned}
& \text { Fbuoy on }= \rho_{f} g V_{\text {fluid displaced }} \\
& \text { object } \\
&=\text { Weight of fluid displaced } \\
& \text { by object } \\
&=\text { net force on object from } \\
& \text { fluid pressure on its sur face }
\end{aligned}
$$

Note: Fbcoy is a consequence of pressure variation with depth $h$ in a fluid!

## Today:

- More on Buoyancy
- Fish in unstable equilibrium
- An in-lecture question most physicist get wrong...
- Fluid flow


Two identical bricks are held under water. Brick $\boldsymbol{A}$ is just beneath the surface of the water, while brick $\boldsymbol{B}$ is at a greater depth.

The force needed to hold brick $B$ in place is
A. larger
B. the same as

than the force required to hold brick $A$ in place.

$$
\begin{aligned}
W_{\text {brich: same }} \\
\text { b buy: same }^{\{ } \begin{aligned}
& F_{\text {tohold in place }}=W-F_{\text {buoy }} \text { same! } \\
& F_{\text {buoy }}=\mid W_{\text {fluid displaced }} \\
&=\rho_{\text {f }} g V_{\text {dip }} * \text { same! }
\end{aligned}
\end{aligned}
$$

Example:
FBD:


$$
\begin{aligned}
& F_{\text {buog }}=F_{\text {net frapprenex }}^{\text {on suface of }} \begin{array}{c}
\text { osject }
\end{array}=F_{\text {botton }}-F_{\text {ton }}=p\left(h_{2}\right) A-p\left(h_{1}\right) A \\
& \Rightarrow F_{\text {buay }}=\rho_{\text {fluigel }} g V_{\text {fluid }}=\rho \underbrace{}_{\text {dipl }}\left(P_{\text {d }}\right) A
\end{aligned}
$$

$$
\begin{aligned}
& =m_{\text {sluid }} \text { dip!! } g \\
& =\mid W_{\text {finid diplaced by ubject| }}
\end{aligned}
$$



Archimedes' Principle the buoyant force is equal to the weight of the displaced water

a) Submeyed Object b) Floating OSjact:

$V_{\text {finid disploced }}=V_{\text {object }}$
Arpaent weij Gt:

$$
\begin{aligned}
& W_{\text {apr }}=\left|W_{\text {obs }}\right|-\left|F_{b_{\text {uop }} \mid}\right| \\
& =\left|W_{\text {oij }}\right|-\left|W_{\text {finid diploced }}\right| \mid
\end{aligned}
$$

$$
=\underline{\left(\rho_{o s_{j}}-\rho_{f\left(l_{i j}\right)}\right) g V_{o b_{j}}}: \quad: \frac{\rho_{\text {fluid }}}{\rho_{0 b_{j}}}=\frac{V_{o b_{j}}}{V_{\text {fluid di,p! }}} \geq 1
$$

Two identical glasses are filled to the same level with water. One of the two glasses has ice cubes floating in it.


Joe cubs are float Which weighs more?

$$
\begin{aligned}
& \Rightarrow\left|W_{\text {ic cull }}\right|=\left|F_{\text {buoy }}\right| \\
& =\left|W_{\text {fluid displaced }}\right| \\
& \text { A. the glass without ice cubes } \\
& \text { B. the glass with ice cubes } \\
& \text { C. both weigh the same }
\end{aligned}
$$

A boat carrying a boulder is floating on a lake. The boulder is thrown overboard and sinks.

The water level in the lake (with respect to the shore):

A) water level is determined b) water displaced by rock and boat?
A. rises
B. drops
8. stays the same
D. not enough info
before


$$
\begin{aligned}
& F_{\text {b coy }}^{\prime \prime}=\rho_{\text {water }} g V_{\text {displaced, total }} \\
& =\left|W_{\text {total }}\right|=\left|W_{\text {boat }}\right|+\left|W_{\text {rock }}\right| \\
& =m_{\text {boat }}+m_{\text {roca }} \cdot g
\end{aligned}
$$

$$
\Rightarrow V_{\text {displaced, total }}=\frac{m_{\text {boat }}}{\rho_{\text {water }}}+\frac{m_{\text {roll }}}{\rho_{\text {water }}}
$$

$$
\begin{aligned}
& =\frac{m_{\text {boat }}}{\rho_{\text {water }}}+\underbrace{\rho_{\text {rock }}}_{D 1} V_{\text {rock }} \\
& \Rightarrow 1 \text { ul, }
\end{aligned}
$$

$\Rightarrow$ boat "he leo" rock to displace en oifi water to float rock!


Fbucy, boat $=\rho_{\text {water }} g V_{\text {displaced to }}$ float boat

$$
\Rightarrow V_{\text {dipl. to flout boat }}=\frac{m_{\text {boat }}}{\rho_{\text {water }}}
$$

$$
V_{\text {displ by rock }}=V_{\text {rock }}
$$

$$
\Rightarrow \underline{V_{\text {dipl }} \text {. total }}=\frac{m_{\text {boat }}}{\rho_{\text {water }}}+1 \cdot V_{\text {rock }}
$$

$\Rightarrow$ less than before
$\Rightarrow$ level drops!

## Buoyancy and Fish

Fish adjust their density $\rho_{\text {fish }}$ so that $\rho_{\text {fish }}=\rho_{\text {water }}$ and $\mathrm{F}_{\mathrm{B}}=\mathrm{W}_{\text {fish }}$ ('neutrally buoyant"). How? Teleost Fish use a Swim Bladder:

- flexible, membrane-enclosed bag of gas
- fish secretes gas into bag, changing $\mathrm{V}_{\text {fish }}$ and $\rho_{\text {fish }}$.




## What happens if an initially neutrally

 buoyant fish goes a little deeper (i.e., $\mathrm{h} \uparrow$ ) ?$\mathrm{p}(\mathrm{h}) \uparrow \Rightarrow \mathrm{V}_{\text {bladder }} \downarrow \Rightarrow \mathrm{V}_{\text {fish }} \downarrow \Rightarrow \rho_{\text {fish }} \uparrow$
$\rho_{\text {fish }} \uparrow \Rightarrow \mathrm{F}_{\mathrm{B}}<\mathrm{W} \Rightarrow$ fish sinks!

If it goes a little higher, it rises.
$\therefore$ Equilibrium is unstable, and fish must constantly adjust gas in bladder!

## Cuttlefish use a Cuttlebone:



## Cuttlefish use a Cuttlebone:

- Rigid, porous bone filled with gas and liquid $\Rightarrow$ Does not compress
- Fish secretes gas into bone, changing $\rho_{\text {fish }}$, but $\mathrm{V}_{\text {fish }}$ stays constant, regardless of $h$ and $p(h)$.
$\therefore$ Can maintain neutral buoyancy when ascending or descending without adjusting gas in cuttlebone (stable).
http://video.google.com/videoplay?docid=5053807934424522294
$\rightarrow$ So for: Static fluids
Now $\rightarrow$ Idea Fluids in Motion:
- Ideal fluid:
(1) No fluid friction (viscosity $=0$ )
(2) Fluid is incompressible

$$
\Rightarrow \rho_{\text {sind }}=\text { canst in the flow }
$$

- true for liquids
- mostly true for flowing gases because $\Delta p^{\prime} s$ usually small $\Rightarrow D \rho^{\prime}>$ small
(3) Steady and non-turbulent (laminar) flow $\Rightarrow$ Vfluid at any fixed point does not change units time
- Continuity:
tube nits flow:

$v_{1}, v_{2}$ : speed of flow at (1) and (2)
- true for any steady fluid flow

In time $\Delta t$, the volume $\Delta V$, of $f l$ id entering at (1) most equal te volume o $V_{2}$ of fluid leaving at (2)

$$
\Rightarrow \Delta V_{1}=\Delta V_{2}
$$

$$
\Rightarrow \frac{\Delta V_{1}}{\Delta t}=\frac{\Delta V_{2}}{\Delta t}=R
$$

$\Rightarrow$ in $\Delta t$ :


$$
\Rightarrow A_{1} \underbrace{\Delta x_{1}}_{\Delta x_{1} \Delta t}=A_{2} \underbrace{v_{2} \Delta t}_{\Delta x_{2}}
$$


$\Rightarrow A_{1} v_{1}=A_{2} v_{2}=$ cons in pipe $\} \begin{aligned} & \text { equation of } \\ & \text { continuity }\end{aligned}$ $\int$ continuity
$\Rightarrow$ define volume flow rate $R$ :

$$
\begin{aligned}
& R=\frac{\Delta(\text { volume })}{\Delta t}=A_{1} v_{1}=A_{2} v_{2}=\text { cont in pipe } \\
& {[R]=\frac{m^{3}}{\mathrm{~s}}}
\end{aligned}
$$

Blood flows through an artery that is partially blocked by deposits along the artery wall.

Through which part of the artery is the volume flow rate $R$ the largest?


$$
\begin{aligned}
R=\frac{\Delta L}{\partial t}=A v & \begin{array}{l}
\text { A. the narrow part } \\
\\
=\text { comt in } \\
\text { Pipe }
\end{array} \\
& \begin{array}{l}
\text { B. the wide parts } \\
\text { C. the part upstream of the blockage } \\
\text { D. the part downstream of the blockage }
\end{array} \\
& \text { E. same volume flow rate everywhere }
\end{aligned}
$$

Blood flows through an artery that is partially blocked by deposits along the artery wall.
Through which ${ }_{R_{1}} \underset{=}{\text { part }}$ of the artery is the flow ${ }_{\mathbb{R}_{2}}^{s_{3}}$ peed $v$ largest?

$R=R_{1}=R_{2}=R_{3}$ A. the narrow part
$=V_{1} A_{1}=V_{2} A_{2} \quad$ B. the wide parts
$=v_{j} A_{3}$
$A \downarrow \Rightarrow \imath \uparrow$
C. the part upstream of the blockage
D. the part downstream of the blockage
E. same volume flow rate everywhere

## Continuity and Gorges

## Volume flow rate $\mathrm{R}=\mathrm{vA}=$ const

$$
\mathrm{R}_{1}=\mathrm{V}_{1} \mathrm{~A}_{1}
$$

$$
\mathrm{R}_{2}=\mathrm{V}_{2} \mathrm{~A}_{2}
$$



$$
\mathrm{R}=\mathrm{R}_{1}=\mathrm{R}_{2}=\text { constant }
$$

## Upper Enfield Glen:




## Taughannock Falls



