Recap:

Lecture 35

Static Liquid:

= Sfg Vfluid displaced Fbuoy on object = Weight of <u>fluid</u> displaced by object = net force on object from fluid pressure on its surface

Note: Fbuy is a consequence of pressure variation with depth h in a fluid!

Kecap:

· Ideal Fluid: no fluid friction; S= const; laminar flour

- Continuity:

$$R_1 = R_2 = A_1 v_1 = A_2 v_2$$

Today:

- Fluids in motion
- Bernoulli's Equation
- Measuring air speed

Bernoulli's Equation
=> conside a take with flow:
p+7
(2)
$$F_2 = P_2 A_2$$

(2) $F_2 = P_2 A_2$
(3) $F_2 = P_2 A_2$
(4) $F_2 = P_2 A_2$
(5) $F_2 = P_2 A_2$
(5) $F_2 = P_2 A_2$
(6) $V_1 = A_2 V_2$
(7) $V_1 = A_2 V_2$
(7) A_2
(7) A

FIG. 14-20 Fluid flows at a steady rate through a length *L* of a tube, from the input end at the left to the output end at the right. From time *t* in (*a*) to time $t + \Delta t$ in (*b*), the amount of fluid shown in purple enters the input end and the equal amount shown in green emerges from the output end.

=> Wonfluid = Olg + OSY = DE Edmi by preserve Presure difference between (1) and (2) drive flow: Wonfluid = F, ox, -F2 ox2 Ly 0p $= P, A, OX, - P_2 A_2 OX_2$ $\Delta V_1 = \Delta V_2 = \Delta V$ =) Won fluid = $(P_1 - P_2) DV$ (A)• $DU_g = U_2 - U_1 = m_2 5Y_2 - m_1 3Y_1$ $= DU_g = m_g(7_2 - 7_i) = SOV_g(7_2 - 7_i)S = const$ • $\Delta \mathcal{X} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$ $=\frac{1}{2}SOV(v_{1}^{2}-v_{1}^{2})$ (c)

inset (A), (B), (c) into:

$$W_{on fluid} = oU_{g} + DX \int duing flow
in some ot
=) (p, -p_{e}) DV = SOV (y_{e}-y_{e}) + \frac{1}{2} SOV (v_{e}^{2}-v_{e}^{2})
(p_{e} - p_{e}) = Sg(y_{e}-y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(y_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(y_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(y_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(y_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(y_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e}^{2}-v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e} - v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e} - v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e} - v_{e}^{2})$$

$$(p_{e} - p_{e}) = Sg(v_{e} - y_{e}) + \frac{1}{2} S(v_{e} - v_{e}^{2})$$

$$(p_{e} - v_{e}) = Sg(v_{e} - v_{e})$$

$$($$

=) for ideal fluid flow:

 $R = \frac{DV_{olume}}{Dt} = U, A_1 = V_2 A_2 = Const$ $P_{1} + SgY_{1} + \frac{1}{2}SV_{1}^{2} = P_{2} + SgY_{2} + \frac{1}{2}SV_{2}^{2} = Const$

Bernoulli:

For flow at constant height, if $v \uparrow$, $p \downarrow$

Some Applications

By Bernoulli's equation, $p_A + 1/2 \rho v_A^2 = p_B + 1/2 \rho v_B^2$

Perfume atomizers

Flowing air creates Δp that **pushes** fluid out of container.

Airfoils in aircrafts?

Air must travel a larger distance over the top of an airfoil than over the bottom.

 \Rightarrow air velocity $v_{top} > v_{bot}$, $p_{top} < p_{bot}$ \Rightarrow Lift Force $F_L \sim \Delta p A_{wing}$ Lift Force

But:

- Bernoulli's equation is for laminar flow only!!
- The flow of air is highly turbulent here!

The Bernoulli principle acting on an umbrella

\Rightarrow Same principle used in sailing \Rightarrow can go faster than wind!

Wind damage to buildings

 $v_{\text{inside}} \sim 0, v_{\text{outside}} \gg 0 \implies \Delta p = p_{\text{in}} - p_{\text{out}} \gg 0$ $\Rightarrow \text{building "explodes"!}$

E.g.:

$$v_{outside} = 360 \text{ km/h} \quad (\sim 220 \text{ mi/h})$$

 $\Delta p = (1/2) \rho_{air} v_{out}^2 \sim 6000 \text{ Pa} (\sim 0.06 \text{ p}_{atm})$

⇒ Upward force on 80 m² house roof: $\Delta p A \sim 5 \times 10^5 N \sim 50 \text{ tons!}$

Hancock Building (Boston, 1973):

Ventilation of prairie dog burrows

-) at point (1):

$$P_{i} = P_{0}$$
, $Y_{i} = 0$, $V_{i} \neq 0$ (Atank » Atale)
-) at point (2)
 $p = P_{2}$, $Y_{2} = 0$, $V_{2} > 0$ for $flaw$ (Atale)
 $P_{2} < P_{1}$
-) at point (3)
 $p = P_{3}$, $Y_{3} = 4$, $V_{3} = V_{2} > 0$ for $P_{2} > 0$ to rese
 $fluid by h$
 $P_{3} < P_{2}$
-) at point (4)
 $P_{3} < P_{2}$
-) at point (4)
 $P_{4} = P_{0}$, $Y = Y_{4} = -d$, $V_{4} = V_{3} = V_{2}$
 $N = 0$ (1)

=) une Bernon III's equation for (1) and (3) P, + Sg Y, + = S U, 2 = P3 + Sg73 + = SU, $= P_{0} + 0 + 0 = P_{3} + 3gh + \frac{1}{2}gv_{3}$ =) $P_3 = P_0 - S_5 - \frac{1}{2} S U_3^2 => a_{nsue} D_1^P$ · to find $V_j = V_2 = V_4 = V_{tube}$: use points () and (4) =) $P_0 + 0 + 0 = P_0 - 35d + \frac{1}{2}3v^2$ =) v²= 2gd =) v= V2gd =) as expected from 1-10 motion for free fall from height d!