- Fluid Friction
- Usluid wert solid surface $=0$ at solid-fluid interface
- Fluid friction/drag opposes relative motion

$$
F_{\text {drag }}=\eta \text { A } \frac{d v}{d y} \quad \eta=\text { viscosity }
$$

- Viscous / laminar flow through pips ($A=$ cont, height $=$ cart)

Need $p_{1}>p_{2}$ to provide power that is dissipated by fluid friction! [with out_friction: use Bernoulli's equation \Rightarrow gives $\Delta p=0$ for $A=$ const and $y=$ const $]$

- Fluid Drag on a Sphere moving through a Fluid:
- Turbulent regime : $\left.F_{\text {Drag }}=\frac{1}{4} \rho_{f} \pi r_{s p}^{2} v^{2}\right\}^{i f}$ (big $r_{1}, v_{\text {j s mall }} \eta$): Forage $\left.=\frac{1}{4} \rho_{f} \pi r_{s p}^{2} v^{2}\right\} R_{e}^{i f}=\frac{\rho_{f} r v}{\eta} \gg 24$
- Viscous regime \quad (small $r_{1} v$; large η): $\left.F_{\text {Drag }}=6 \pi \eta r_{\text {sp }} v\right\}$ if $\operatorname{Re} \ll 24$
\Rightarrow Rel nold's Number:

$$
R_{e}=\frac{\rho_{\text {slid }} r v}{\eta} r \text { "typical" dimension }
$$

- Terminal speed of a Sphere:

Fora

$$
\oiint_{w} F_{b \text { buy }} v_{t, \text { tar }}=\sqrt{\frac{16}{3} \frac{\left(\rho_{s_{p}}-\rho_{f}\right)}{\rho_{f}} g r} \text { or } v_{t, v i s c}=\frac{2}{g} \frac{\rho_{s p}-\rho_{f}}{\eta} g r^{2}
$$

\Rightarrow to calculate v_{t} : Use formula that gives smallest V_{t} (biggest F drag)
$\rightarrow J_{3}$ the turbulent regime:
$F_{\text {drag } \operatorname{tush}}\left(v=v_{t}\right)=\frac{1}{4} \rho_{\text {sinid }} \pi r_{\text {ip }}^{2} v_{t}^{2}$
v_{t}

Today:

- Surface tension
- Bubbles
- Liquid-solid-gas interfaces

What happens?

A. Air flows from the large to the small balloon B. Air flows from the small to the large balloon
C. Insufficient information

Surface Tension:
\rightarrow in absence of gravity and contact with solid surface
\rightarrow liquids will form sphers!
\rightarrow sphere: geometry with smallest surface area for a given volume!
\rightarrow why?
gas
$00000 \in \operatorname{surfac}$ 00000 00000 $0 \quad 0 \quad 0 \quad 0 \in$ molecule in liquid

- Molechs in ligured a tract each other
\Rightarrow minimize their ency E by getting close to each other
\rightarrow In the bulk of the liquid
$N_{\text {bulk }}=$ number of neast neighbon of a molecule in the buln
Eneyy reduction: $\frac{\left|E_{\text {bulu }}\right|}{\text { in bulu }}$ molule $N_{\text {buln }} \cdot \Delta E_{\text {pernejhor }}$
\rightarrow At the surfan:
$N_{\text {suff }}=$ number of nearst neighbon of a molecule at the surface
Eneyg reduction:
at roufoue $\frac{\left|E_{\text {suff }}\right|}{\text { molecale }} \propto N_{\text {suf }} \cdot \Delta E_{\text {per neighbor }}$

$$
N_{\text {surf }}<N_{\text {bulh }} \Rightarrow \frac{\left|E_{\text {suf }}\right|}{\text { modecule }}<\frac{\left|E_{\text {buln }}\right|}{\text { modecule }}
$$

\Rightarrow larger energy seduction in bulk
\Rightarrow minimize surface area \Rightarrow for spheres
\Rightarrow Energy cost to create (or increase) surface area:

$$
\begin{aligned}
& y=\frac{\text { enegycost to add sufau area }}{\text { surface area created }}=\text { surface tension } \\
& {[\gamma]=\underbrace{\frac{\partial}{m^{2}}}_{\frac{\partial}{m_{m a y y}^{2}}}=\frac{N_{m}}{m^{2}}=\underbrace{\frac{N}{m}}_{\frac{N}{\text { fore }}}}
\end{aligned}
$$

\Rightarrow Surface tension tries to make sphes, which have the smallest surface area/ Volume!

Bubbles...

Example: Flat liquid film in a wix frame:

side vien:

$$
\frac{\text { air }<\frac{\text { note: }}{2}}{\frac{\text { mir } \ll}{2}<\text { sufacs }}
$$

2oufas:

$$
\begin{aligned}
& \text { of area } A=\angle x \text { per side } \\
& \Rightarrow \text { Enesy of film surface }=E_{\text {suff }}=y A \cdot 2^{\ll} \\
& =\gamma<x \cdot 2 \\
& \text { if } x \rightarrow x+\Delta x \\
& \Delta A \\
& \left.\left.\Rightarrow \Delta E_{\text {suf }}=2 \gamma \hat{L \Delta x} \quad\right\} \text { increar in enig }\right\rangle \\
& =\text { worh ue do by fore we arrly } \\
& =F \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 \gamma<\Delta x=F \Delta x \\
& \Rightarrow\left|F_{\text {we oroly }}\right|=2 \gamma L=\left|F_{\text {by onf. temion }}\right| \\
& \Rightarrow \frac{F}{L}=2 \gamma=\frac{\text { fore }}{\text { lengts }} \text { that ts fluid } \\
& 2 \text { surfacs } \quad \text { film exets on its edge } \\
& \\
& {[\gamma]=\frac{N}{m} \quad \text { (} 1 \text { to edye) }}
\end{aligned}
$$

water: $\gamma_{\mathrm{H}_{2} \mathrm{O}}=0.07 \frac{\mathrm{~J}}{\mathrm{~m}^{2}}$

$$
\rightarrow \text { for } L=0.1 \mathrm{~m} \Rightarrow F_{y}=0.014 \mathrm{~N} \ldots \text { ting! }
$$

But: inth microworld, F_{∂} is lase conpard to weigh (e.s. insect...)

A soap film with surface tension γ stretches across a rectangular plastic frame as shown.
L

What is the force F exerted by the film on the left edge of the W frame?
A. γL
B. γW
C. $2 \gamma L$
D. $2 \gamma W$
E. Insufficient information

Bubbles...

Bubbles:
(A) "Two-sided" bubble (e.g. soop bubbl)
$F Q D$ for tor half

(recall hemisphes qustion) ousface tansion by
$\rightarrow F_{y, n t}=2 y(\underline{(2 \pi R)}$ bottom half of bulbl 2 sufacs circumferme $=$ lagtt of edge of film

$$
\Rightarrow \text { need } \Sigma \vec{F}=0 \Rightarrow\left|F_{\Delta p, \text { net }}\right|=\left|F_{\gamma}\right| \Rightarrow \Delta p=p_{i}-p_{0}=\frac{4 \gamma}{R}
$$

Small bubble

\Rightarrow needs lays insich prenuse
(13) "One-sided" Bubble: (e.g. bubble in soda, wate doplets) onty one ga-liguid intefay

$$
\begin{aligned}
& \Rightarrow F_{y, \gamma t}=\gamma(2 \pi R) \\
& \Rightarrow D p=p_{i}-p_{0}=\frac{2 \gamma}{R}
\end{aligned}
$$

\rightarrow Capillary Rise (for $\theta_{c}<90^{\circ}$)
LP k small diameter tube (capillary)
 liquid in $\vec{P}=$ radius of tube pressure contains
\rightarrow from bubbles: if $\theta_{c}=0^{\circ}$
$1 / 2$ of one-sided babble $\Rightarrow \Delta P=P_{0}-P_{t}=\frac{2 \gamma}{P}$ Po-Ptop "inflates"
bubble; surface
tension opposes
"inflation" $\left\{\begin{array}{r}\text { if } \theta_{c}>0^{\circ} \\ \theta_{c} \mid x /\end{array} \begin{array}{r}\text { less than } 1 / 2 \text { of a } \\ \text { one-sided bubble } \\ =\Delta p=p_{0}-p_{t} \\ =\frac{2 \gamma}{R} \cdot \cos \theta_{c}\end{array}\right.$

$$
\begin{aligned}
\Rightarrow \Delta p & =p_{0}-p_{t o r}=\rho_{l} g \underline{h}=\frac{2 \gamma}{R} \cos \theta_{c} \\
& \Rightarrow h=\frac{2 y}{\rho_{e} g R} \cos \theta_{c} \propto \frac{1}{R}
\end{aligned}
$$

\Rightarrow Small P gives large h !

