Recap: Motion along a line Lecture 5

- relevant variables: x, v, a
\rightarrow magnitude: $|x|,|v|,|a| \quad| |=" a b$ solute value"
\rightarrow direction: \pm sign
- Complicated motion:
- apply $a=$ const analysis to each $a=$ const interval
- use $\Delta v=a r e a$ "under" a-t graph to get $v-t$ grant
- Solving physics problems:

I Intensify type of problem
II Draw + collect in formation
III Solve (use equations
IV Check your answer

- order of magnitude reasonable?
- \# of significant figures?
- units correct?

Today:
 - Motion in a plane (2-D motion)
 - The key to 2-D (and 3-D) motion

- Specifying vectors
- Vector addition and subtraction
- Position $\overrightarrow{r(t)}$, velocity $\overrightarrow{\mathrm{v}(\mathrm{t})}$, acceleration $\overrightarrow{\mathrm{a}(\mathrm{t})}$

Motion in a Plane (2-D Motion)

Two balls are launched simultaneously from the same height, one starting from rest and dropping straight down, the other given an initial horizontal velocity.

Which ball hits the ground first?

A. Ball "A"
B. Ball "B"
C. Both at same time

- same height
$-y^{x-m}$ motion determine" time of
flight" here \rightarrow same Δt

Motion in a Plane (2-D Motion)

- The x-and y-components of a 2-D motion can be treated independently!
- No mixing of x and y-component!
- 2D motion problems become two 1-D motion problem! $)_{c}^{\text {ono }}$

How to specify/describe 2-D Motion?
magnitucle:- easy (e.g. speed)
direction?
Vectors: have magnitude and direction examples: $\vec{r}, \vec{v}, \vec{a}, \vec{F} \leftarrow$ "vector"

Scalars have magnitude only

Specifying Vectorn:
(1) Polar: Magnitude $+y_{n}+$ direction

$$
\begin{aligned}
& |\vec{A}|=A=\text { magnitude of } \vec{A} \\
& \angle \vec{A}=\theta=\text { givs divection }
\end{aligned}
$$

coorchinate:
sptem
(2) Conpon ents:

$$
\begin{aligned}
& \vec{A}=\vec{A}_{x}+\vec{A}_{y} \\
& A_{x}=A \cdot \cos \theta \\
& A_{y}=A \cdot \sin \theta
\end{aligned}
$$

$A_{x}=A \cos \theta$
$A_{7}=A \sin \theta$

$$
\left\{\begin{array}{l}
|\vec{A}|=A=\sqrt{A_{x}^{2}+A_{y}^{2}} \\
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
\end{array}\right.
$$

Pythajora: $A^{2}=A_{x}^{2}+A_{y}^{2}$
$\left(c^{2}=a^{2}+b^{2}\right)$

$$
\begin{aligned}
& \sin \theta=\frac{A_{y}}{A} \quad \cos \theta=\frac{A_{x}}{A} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{A_{y}}{A_{x}}
\end{aligned}
$$

Unit vector:

$$
\begin{aligned}
& \vec{c}, \hat{c}=\text { unit vector along }+x \\
& \vec{\jmath}, \hat{\jmath}=\text { unit rector along }+y
\end{aligned}
$$

have magnitude $=1$, no units
\Rightarrow only indicate direction

$$
\begin{aligned}
& \Rightarrow \vec{A}_{x}=A_{x} \vec{l} \\
& \vec{A}_{y}=\underbrace{A_{y}} \vec{f}^{-} \\
& \text {magnituts, direction } \\
& \text { incluch sign, } \\
& \vec{A}=\vec{A}_{x}+\vec{A}_{y}^{\prime}=A_{x} \vec{i}+A_{y} \vec{j} \quad \underbrace{}_{\text {到 }}+\overrightarrow{\vec{c}}=1
\end{aligned}
$$

Which correctly describes the components of \vec{A} ?

A. $A_{x}>0$ and $A_{y}>0$
B. $A_{x}>0$ and $A_{y}<0$
C. $A_{x}<0$ and $A_{y}>0$
D. $A_{x}<0$ and $A_{y}<0$
E. None of the above.

Which correctly describes the components of \vec{A} ?

$$
\begin{aligned}
& \text { A. } A_{x}>0 \text { and } A_{y}>0 \\
& \text { B. } A_{x}>0 \text { and } A_{y}<0 \\
& \text { C. } A_{x}<0 \text { and } A_{y}>0 \\
& \text { D. } A_{x}<0 \text { and } A_{y}<0
\end{aligned}
$$

E. None of the above.
\Rightarrow vector o don't care where they are in the plane!

Vector Addition and Subtraction:
(1) Graphical Method:

$$
\begin{aligned}
\vec{C} & =\vec{A}+\vec{B} \\
& =\vec{B}+\vec{A}
\end{aligned}
$$

$$
\begin{aligned}
\vec{D} & =\vec{A}-\vec{B} \\
& =\vec{A}+(-\vec{B}) \\
& =(-\vec{B})+\vec{A}
\end{aligned}
$$

then draw live "tail to tip"
(2) Using Component:

Never mix x - and y-component

$$
\begin{aligned}
& \vec{A}=A_{x} \vec{l}+A_{y} \cdot \vec{j} \\
& \vec{B}=B_{x} \vec{l}+B_{y} \vec{\jmath} \\
& \vec{C}=\vec{A} \pm \vec{B}=(\underbrace{A_{x} \pm B_{x}}_{\text {add } x \text {-components }}) \vec{l}+(\underbrace{A_{y} \pm B_{y}}_{\text {sum of }}) \vec{\jmath} \\
& y_{\hat{1}}
\end{aligned}
$$

