Cornell ERL's Main Linac Cavities

N. Valles for Cornell ERL Team

- RF Design Work
 - Cavity Design Considerations
 - Optimization Methods
 - Results
- Other Design Considerations
 - Coupler Kicks
 - Stiffening Rings, Mechanical Resonances
- Prototype Cavity Results
- Conclusions

- Cavity Design Considerations
- Optimization Methods
- Results
- Other Design Considerations
 - Coupler Kicks
 - Stiffening Rings, Mechanical Resonances
- Prototype Cavity Results
- Conclusions

- Maximize Threshold Current through linac
 Require > 100 mA at 77 pC bunch charge
- Minimize cryogenic losses due to fundamental
- Maintain low peak fields (Epk/Eacc < 2.1)
- Obtain robust design w.r.t. machining variation

Optimization Methods

Naïve Method

• Very computationally expensive!

Parallel Computing Resources Supported at Cornell's Center for Advanced Computing

Better Method

- Determine analytical goal function from scaling laws and optimize it
- Single cavity result

$$I_{th} \propto \frac{1}{\left(\frac{R}{Q}\right)_{\lambda} (Q_L)_{\lambda} \frac{1}{\omega_{\lambda}}} \cdot \frac{1}{T_{12}^* \sin(\omega_{\lambda} t_r)}$$

- Optimization then only requires a field solver, saving particle tracking as a verification of design
- Use parallel computing to speed optimization

Goal Function from Scaling Laws

Baseline Design

Center cells with increased cell-to-cell coupling

Increasing cell-to-cell coupling results in less variation of HOM properties for a given dimensional error, leading to increased threshold current through the linac.

Beam-Break Up Simulations

2011/Oct/17

Specific Manufacturing Defects

Cell Length Error

Elliptically Deformed Cell

Cell Radius Error

Cell with Bump

Deformed Cell Surface

Liling Xiao, Kwok Ko, Ki Hwan Lee, Cho-Kuen Ng, SLAC, Menlo Park, U.S.A Matthias Liepe, Nicholas Valles, Cornell University, Ithaca, NY, U.S.A

2011/Oct/17

Threshold Current Results

2011/Oct/17

- Cavity Design Considerations
- Optimization Methods
- Results
- Other Design Considerations
 - Coupler Kicks
 - Stiffening Rings, Mechanical Resonances
- Prototype Cavity Results
- Conclusions

Coupler Kick Studies

Goal to minimize the effect of the coupler on the beam. Necessary for low emittance operation.

2011/Oct/17

Minimizing Microphonics in Cavities

2011/Oct/17

- Small bandwidth cavity vulnerable to detuning caused by microphonics, especially helium pressure fluctuations
- Diameter of cavity stiffening rings used as free parameter to reduce df/dp
- ANSYS simulations show that large diameter, small diameter, or no rings at all have smallest df/dp

- Tuner requirements rule out largest diameter stiffening rings
- Manufacturing easier with no rings
- Small/no rings make cavity fragile and lower mechanical resonant frequencies Sam Posen

- Cavity Design Considerations
- Optimization Methods
- Results
- Other Design Considerations
 - Coupler Kicks
 - Stiffening Rings, Mechanical Resonances
- Prototype Cavity Results
- Conclusions

Prototype Cavity Fabrication

Finished main linac cavity with very tight (± 0.250 mm) shape precision \Rightarrow important for supporting high currents (avoid risk of trapped HOMs!)

2011/Oct/17

Prototype Cavity Pre-Test Treatment

- Fabricated with 85% field flatness
- Heavy BCP
- Outgassing (>600 C)
- Tuned to 95% field flatness
- Light BCP
- Ultrasonic cleaning
- HPR 16 hr
- 120^o bake 48 hr

2011/Oct/17

F. Furuta, A. Ganshyn, M. Ge, N. Valles Cornell University 2011-Oct

2011/Oct/17

- Cavity Design Considerations
- Optimization Methods
- Results
- Other Design Considerations
 - Coupler Kicks
 - Stiffening Rings, Mechanical Resonances
- Prototype Cavity Results
- Conclusions

- The cavity design for the CERL main linac has been completed
 - Cavity design optimized with respect to beambreak up current
 - Simulations show linac supports > 400 mA current
 - Coupler kick and mechanical simulations are consistent with high quality beam requirements
- Prototype Cavity Fabricated and Tested
 - Fabrication: Cavity meets tight shape tolerances
 - RF Test: Cavity met specifications on first test
 - Next steps: maintaining performance with HOM absorbers and when in horizontal test cryostat

Conclusions

- Test of prototype cavity without and with beam (up to 100 mA)
- Build and test full main linac SRF cryomodule

Thanks & References

2011/Oct/17

Special Thanks to:

- ERL 2011 Committee
- Cornell SRF Group
- Cornell ERL Team
- SLAC Advanced Comp Group:
 L. Xiao, K. Ko, K. Lee, C. Ng
- Work supported by the NSF

For more information see:

Cornell ERL Research and Development C. E. Mayes , et. al. PAC 2011

Robustness of the Superconducting Multicell Cavity Design for the Cornell Energy Recovery Linac, M. Liepe, G.Q. Stedman, N. Valles PAC 2009

Seven-Cell Cavity Optimization for Cornell's Energy Recovery Linac , N. Valles and M. Liepe, SRF 2009

Baseline Cavity Design for Cornell's Energy Recovery Linac , N. Valles, Matthias Liepe, LINAC 2010

Cavity Design for Cornell's Energy Recovery Linac, N. Valles, M. Liepe, IPAC 2010

Coupled Electromagnetic-Thermal-Mechanical Simulations of Superconducting RF Cavities, S. Posen, M. Liepe, N. Valles, IPAC 2010

Designing Multiple Cavity Classes for the Main Linac of Cornell's ERL N. Valles and M. Liepe, PAC 2011

Effects of Elliptically Deformed Cell Shape in the Cornell ERL Cavity. Liling Xiao, Kwok Ko, Ki Hwan Lee, Cho-Kuen Ng , Matthias Liepe, N. Valles , SRF 2011

Beam Break Up Studies for Cornell's Energy Recovery Linac. N. Valles, Daniel Stuart Klein, Matthias Liepe. SRF 2011

Coupler Kick Studies in Cornell's 7-Cell Superconducting Cavities. N. Valles, Matthias Liepe, Valery D. Shemelin SRF 2011