

The Superheating Field of Niobium: Theory and Experiment

Nicholas Valles Cornell University Laboratory for Elementary-Particle Physics

• Critical Fields of Superconductors

Outline

REAL AND

- Survey of Previous Work
- New Results from Cornell on the Superheating Field

- Critical Fields of Superconductors
- Survey of Previous Work
- New Results from Cornell on the Superheating Field

- Type-I: Meissner State below applied field Hc, normal above
- Type-II: Meissner State below Hc1. Energetically favorable to enter mixed state below Hc2. Normal above Hc2.
- Hc3 is a surface effect: bulk is normal, but surface layer (~ξ) superconducting.

Critical Field	Value at 0K (mT)	Reference
Bc	200	Finnemore; Casalbuoni
Bc1	174	Finnemore
Bc1	190	C. Vallet
Bc2	390	Casalbuoni
Bc2	400	Finnemore
Bc2	410	Saito
Bc2	450	C. Vallet
Bc2	450	C. Vallet

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Superheating Field: Metastability and Nucleation

Raindrops: the Liquid-Gas Transition

J. Sethna, Cornell University

Can we calculate the phase diagram for H_{sh} ?

August 7, 2011

Metastability Threshold and H_{sh}

Why is there a barrier to vortex penetration?

- Why do we care?
 - $-H_{sh}$ sets the ultimate physical limit for surface fields

Motivation

- $-H_{sh}$ can be effected by surface treatments
- Metastability is an interesting phenomenon to study

- Critical Fields of Superconductors
- Survey of Previous Work
- New Results from Cornell on the Superheating Field

• Most H_{sh} work based on Ginzburg-Landau Theory

$$H_{sh}(T) = c(\kappa)H_c \left(1 - \left(\frac{T}{T_c}\right)^2\right)$$

• GL solved in 1D case

$$\begin{split} H_{sh} &\approx \frac{0.89}{\sqrt{\kappa_{GL}}} H_c & \text{for } \kappa_{GL} \ll 1 \\ H_{sh} &\approx 1.2 H_c & \text{for } \kappa_{GL} \approx 1 \\ H_{sh} &\approx 0.75 H_c & \text{for } \kappa_{GL} \gg 1 \end{split}$$

- Asymptotic expansion (Dolgert et. al.)

First Evidence Hsh > Hc

SUPERHEATING IN PURE SUPERCONDUCTING NIOBIUM *

J. C. RENARD and Y. A. ROCHER

Alcatel. Bruyères le Châtel 91. France

Received 28 March 1967

We present experimental evidences of superheating in pure niobium: our results are in agreement with a superheating field larger than H_c .

Magnetization curves of Nb cylinders at 4.2K showing Hsh > Hc

Hsh Measurements: Midrange κ

Type-I and Type-II superconducting spheres near T_c. Yogi (1976)

H_{sh}: First measurement of Temperature Dependence

- Critical Fields of Superconductors
- Survey of Previous Work
- New Results from Cornell on the Superheating Field

Theories of Superconductivity

Validity versus complexity

Ginzburg-Landau (GL)

- $\psi(r)$, H(r) order parameters
- Spatial dependence OK
- Valid only near T_c

Bardeen Cooper Schrieffer (BCS) theory

- Pairing *k*, -*k* within vibration energy
- Excellent for traditional superconductors
- $H_{c1}(T), H_{c2}(T)$ done
- $H_{sh}(T)$ hard (spatial dependence)

J. Sethna, Cornell University

Theories of Superconductivity

Validity versus complexity

Eilenberger Equations

- Valid at all temperatures
- Assumes $\Delta(r)$, H(r) vary slowly

- Needs electronic structure
- Never done before for H_{sh}

J. Sethna, Cornell University

August 7, 2011

Theoretical H_{sh} Work

Ginzburg-Landau

Eilenberger near Tc – Mark Transtrum

N. Valles. 15th International Conference on RF Superconductivity (2011)

Hsh(T), Large κ

- Solving the Eilenberger equations are hard, especially for moderate or small κ
- Experimental measurements are necessary to help guide theory

N. Valles. 15th International Conference on RF Superconductivity (2011)

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Hsh(T) Measurement

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Hsh(T) Measurement

LR1-3 to measure Superheating Field

August 7, 2011

Pulsed Power Measurements

Boeing Klystron supplies high power pulses

- $P_f \sim 1.5 \text{ MW}$
- $Q_{ext} \sim 6 \times 10^{6}$
- Ramp up power quickly (100 μs) to minimize thermal effects

Calculating Q_0 vs Time

• Following Hays we can write:

$$P_f = P_r + \frac{\omega U}{Q_0} + \frac{dU}{dt}$$
 and $\sqrt{P_r} = \sqrt{P_f} - \sqrt{\frac{\omega U}{Q_{ext}}}$

which gives
$$\frac{\omega U}{Q_0} = 2\sqrt{\frac{\omega U P_f}{Q_{ext}} - \frac{dU}{dt} - \frac{\omega U}{Q_{ext}}}$$
 or

$$\frac{1}{Q_0} = \frac{2}{\omega\sqrt{U}} \left(\sqrt{\frac{\omega P_f}{Q_{ext}}} - \frac{d\sqrt{U}}{dt} \right) - \frac{1}{Q_{ext}}$$

Measuring Hsh

Measuring Hsh

Measuring Hsh

R_{BCS} vs Temperature

August 7, 2011

Hsh(T) Measurement

Transtrum: $H_{sh}(\kappa)$

Transtrum: $H_{sh}(\kappa)$

August 7, 2011

$c(\kappa)$ vs Mean Free Path

H_{sh}(T) Measurement

Q vs E (CW), for LR1-3

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

$H_{sh}(T)$ Measurement

• We now have a measurement showing the full temperature dependence of Hsh

Conclusions

- GL theory is suprisingly accurate over the full temperature range
- Surface treatments strongly influence Hsh
- There appears to be a trade-off between removing high field Q-slope and high superheating field

– Alternative to 120C bake?

• Eilenberger theory appears to give a small increase to H_{sh} at low temperatures

The Future of H_{sh}

- H_{sh} measurements are a place where experiment can really drive theory
- More work needs to be done to ensure the convergence of the Eilenberger eqns for T << T_c
- Can we reproduce these results for new materials such as Nb₃Sn or MgB₂?

• Eilenberger theory appears to give a small increase to H_{sh} at low temperatures

The Future of H_{sh}

- H_{sh} measurements are a place where experiment can 1 Sam Posen at Cornell is currently
- Mor making Nb3Sn. **THPO066** $\operatorname{conv} H_{sh}$ measurements to follow
- Can we reproduce these results for new materials such as Nb₃Sn or MgB₂?

 T_{c}

- Special thanks:
 - Matthias Liepe, Hasan Padamsee, and Zachary Conway for great help with experimental measurements

Thanks

A LAND

 James Sethna and Mark Transtrum for temperature dependence from Eilenberger Theory

- 1 Bean, C. P., and J. D. Livingston (1964), Phys. Rev. Lett. 12 (1), 14. 2 Boato, G., G. Gallinaro, and C. Rizzuto (1965), Solid State Communications 3 (8), 173. 3 Campisi, I. E. (1987), SLAC AP-58. 4 Campisi, I. E., and Z. D. Farkas (1984), SLAC AP-16. 5 Catelani, G., and J. P. Sethna (2008), Physical Review B 78. 6 Ciovati, G. (2004), Journal of Applied Physics 96. 7 Ciovati, G. (2007), 13th International Workshop on RF Superconductivity. 8 Conway, Z. A., D. L. Hartill, H. S. Padamsee, and E. N. Smith (2009), in Particle Accelerator Conference. 9 Cyrot, M. (1972), Reports on Progress in Physics. 10 De Blois, R. W., and W. De Sorbo (1964), Phys. Rev. Lett. 12 (18), 499. 11 DeSorbo, W. (1963), Phys. Rev. 132 (1), 107. 12 Dolgert, A. J., S. J. D. Bartolo, and A. T. Dorsey (1995), arXiv:condmat. 13 Doll, R., and P. Graf (1967), Phys. Rev. Lett. 19 (16), 897. 14 Eilenberger, G. (1968), Z. Phys. 214. 15 Eremeev, G., and H. S. Padamsee (2006), Physica C: Superconductivity. 16 Farkas, Z. D. (1984), SLAC AP-15. 17 Finnemore, D. K., T. F. Stromberg, and C. A. Swenson (1966), Phys. Rev. 149 (1), 231. 18 French, R. A. (1968), Cryogenics 8. 19 Geng, R. L., C. Crawford, H. Padamsee, and A. Seaman
- (2005), in 12th International Workshop on RF Superconductivity.

- 20 de Gennes, P. G. (1965), Solid State Communications 3 (6), 127.
 21 Ginsburg, V. L., and L. Landau (1950), Zh. Eksp. Teor. Fiz. 20.
 22 Halbritter, J. (1970), KAROLA OAVolltextserver
 des Forschungszentrums Karlsruhe (Germany).
 23 Hays, T., and H. S. Padamsee (1995), in *7th Workshop on RF*
- Superconductivity. 24 Hays, T., H. S. Padamsee, and R. W. Roth (1995), in *Proceedings of*
- the 1995 U.S. Particle Accelerator Conference.
- 25 Holmes, S. D. (2009), in Particle Accelerator Conference.
- n 26 J.A. Crittenden, e. a. (2009), in *Particle Accelerator Conference*. 27 Joseph, A. S., and W. J. Tomasch (1964), Phys. Rev. Lett. **12 (9), 219.**
- 28 Kneisel, P. (2004), in Pushing the Limits of RF Superconductivity.
- 29 Padamsee, H., J. Knobloch, and T. Hays (1998), *RF Superconductivity* for Accelerators (Wiley).
- 30 Padamsee, H., J. Knobloch, and T. Hays (1998), "Rf superconductivity for accelerators," (Wiley) pp. 148–152.
- 31 Pippard, A. B. (1991), Proceedings of R. Soc. London Ser. A 216.
- 32 Renard, J., and Y. Rocher (1967), Physics Letters A
- 24 (10), 509.
- 33 Saito, K. (2004), in *Pushing the Limits of RF Superconductivity Workshop.*
- 34 Sethna, J., and M. Transtrum (2009), Personal Communication.
- 35 Shemelin, V. (2005), in The 2005 Particle Accelerator Conference.
- 36 Valles, N. R. A., Z. A. Conway, and M. Liepe (2009), in SRF09.
- 37 Yogi, T. (1976), Ph.D. thesis (California Institute of Technology, Pasadena, California).
- 38 Valles, et. al. http://arxiv.org/abs/1002.3182