$B_{s(d)} ightarrow \mu^+ \mu^-$ with 7 fb⁻¹ of CDF Data

Walter Hopkins

Cornell University

September 5th

Motivation

- $B_s \rightarrow \mu^+ \mu^-$ can only occur through higher order FCNC diagrams in Standard Model (SM)
- This decay is not only suppressed by the GIM Mechanism but also by helicity
- SM predicts very low rate with little SM background ($\mathcal{BR}(B_s \rightarrow \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$, Andrzej J. Buras et al, JHEP 1009 (2010) 106
- BSM models predict enhancement
- Ratio of $\mathcal{BR}(B_s \to \mu^+ \mu^-)$ and $\mathcal{BR}(B_d \to \mu^+ \mu^-)$ is important to discriminate amongst BSM models
- Clean experimental signature $\rightarrow \tau$'s would have stronger coupling but experimentally difficult

Walter Hopkins (Cornell University)

- Measure rate of $B_s o \mu^+ \mu^-$ relative to $B^+ o J/\Psi K^+$, $J/\Psi o \mu^+ \mu^-$
- Apply same selection to find $B^+ o J/\Psi K^+$
- Systematic uncertainties will cancel in ratio \Rightarrow e.g. dimuon trigger efficiency is the same for both modes

$$\mathcal{BR}(B_{s} \to \mu^{+}\mu^{-}) = \underbrace{\begin{pmatrix} N_{B_{s}} & \epsilon_{B}^{trig} \\ N_{B^{+}} & \epsilon_{B_{s}}^{trig} \end{pmatrix}}_{N_{B^{+}} & \epsilon_{B_{s}}^{trig}} \underbrace{\epsilon_{B_{s}}^{tree \alpha} & \alpha_{B^{+}} \\ \epsilon_{B_{s}}^{rec \alpha} & \alpha_{B^{+}} \\ \epsilon_{B^{+}}^{rec \alpha} & \alpha_{B^{+}} \\$$

- Estimate acceptances and efficiencies
- · Identify variables that discriminate signal and background
- Make multivariate discriminant, for background rejection
 - Optimized with Pythia signal MC and data mass sideband
 - Validate in B⁺ sample
- Estimate Background
 - Combinatoric background
 - Peaking background: $B \rightarrow hh$
- Unblind

Signal vs. Background

Signal Properties

- Final state fully reconstructed
- B_s is long lived ($c\tau = \sim 450 \mu m$)
- B fragmentation is hard: few additional tracks

Background contributions & characteristics

- Sequential semi-leptonic decay: $b
 ightarrow c \mu^- X
 ightarrow \mu^+ \mu^- X$
- Double semi-leptonic decay: $bb
 ightarrow \mu^- \mu^+ X$
- Continuum $\mu^-\mu^+$
- μ + fake and fake+fake
 - Partially reconstructed
 - Softer
 - Short lived
 - Has more tracks
- $B \rightarrow hh$: peaking in signal region

Data Sample and Signal Selection

Central-Central (CMU) and Central-Forward (CMX) Di-muon Trigger

- Central: p_T >2.0 GeV and $|\eta|$ <0.6 Forward: p_T >2.2 GeV and 0.6< $|\eta|$ <1.0
- *p_T* cuts restrict us to well understood trigger regions

Basic Quality Cuts

- Tracker tracks with hits in 3 silicon layers
- Likelihood and dE/dx based muon Id
- Vertex Quality
- Various Baseline Cuts
 - *p*_T(μ⁺μ⁻) > 4.0 GeV;
 - Loose Isolation and opening angle (pointing) cuts

Still background dominated after a reduction of events of 4 orders of magnitude

Neural Network

- New 14-variable NN to increase S/B
- Carefully chose input variables to avoid bias in $M_{\mu\mu}$

NN Input Variables

- λ (proper decay length)
- Isolation
- Pointing angle
- λ/σ_{λ}
- lower $p_T(\mu)$
- Secondary vertex χ^2
- Decay length (L_{3D})
- Transverse Decay length significance $(L_{xy}/\sigma_{L_{xy}})$
- 2D Pointing angle
- Smaller impact parameter
- Larger impact parameter
- Smaller impact parameter significance
- Larger impact parameter significance
- B_{s(d)} impact parameter

Background Estimates

Combinatorial Background

- Use sideband to estimate combinatorial background in signal window
- Assign systematic errors on background estimates based on slope variation
- Highest 3 NN bins have additional systematic from uncertainty of background shape

Peaking Background

- $B \rightarrow hh$ processes where both hadrons (either kaons or pions) are misidentified as muons
- Estimate fake rate dataset rich in kaons and pions (D*-tagged $D^0 o K^+\pi^-$
- Use MC to similulate kinematics of processes

Control Samples: Background Estimate Cross Checks

- Signal contains two opposite signed muons with positive lifetime ($\vec{p}_{B_{s(d)}}$ aligned with primary to secondary vertex vector)
- Checked background estimates with 4 control samples
 - Opposite sign muons with negative lifetime ($\vec{p}_{B_{s(d)}}$ anti-aligned with primary to secondary vertex vector)
 - Same sign muons with positive lifetime
 - · Same sign muons with negative lifetime
 - Fake muons with positive lifetime (Fake muons = muon that failed muon ID requirements)
- Followed our procedure for background estimation in each control sample for all mass and NN bins
- Compared estimate with observed events in blinded region

Checked background with 64 samples \Rightarrow good agreement between predicted and observed

Results: Unblinded Mass Plots

Results: Limits and P-Values

Limits

- Set limits using CLs methodology
- No excess in $B_d,$ limit: $\mathcal{B}(B_d \to \mu^+ \mu^-) {<} 6.0 \times 10^{-9} \text{ at } 95\% \text{ C.L.}$
- Significant excess in B_s , limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.0 \times 10^{-8}$ at 95% C.L.

P-Values

- Generate background only MC
- Compare observed LLR $\left(\frac{P(s+b|data)}{P(b|data)}\right)$ value with LLR distribution of MC
- P-value for bkg only hypothesis: 0.27%
- P-value for SM+bkg hypothesis: 1.9%

- Estimate central value for B_s case using χ^2 fit
- Measured central value: $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) = 1.8^{+1.1}_{-0.9} \times 10^{-8}$
- 90% bounds: $4.6 \times 10^{-9} < B(B_s \rightarrow \mu^+\mu^-) 3.9 \times 10^{-8}$

- First two sided limit from CDF using 7 fb $^{-1}$ of data
- Compatible with limits set by CMS and LHCb
- Plan to update the analysis with full CDF dataset (${\sim}10~{
 m fb}^{-1}$)