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Abstract

We discuss Z0bLb̄L physics in this lecture.To set up a new model beyond the SM, after the Electroweak
Precision Test(EWPT), and that the flavor changing currents appear only at charged sector at tree
level(FCNC)[1], the remaining problem is there is a tension between keeping the ZbLb̄L couplings within
the tolerable fluctuation around the well measured experimental constrain on bottom quark gauge cur-
rents and getting a sufficient larger heavy top quark mass. In other words, how to get a enough heavy
top quark mass without giving larger correction to the Zbb̄ vertex. Thus the Z0bb̄L vertex has some de-
pendence on the top quark physics, which is important due to ”Top priority”. One of the approaches
to solving the problem is by introducing a new custodial symmetry, which is a combination of custodial
symmetry and a Z2 parity symmetry[2] to protects the ZbLb̄L couplings. This new custodial symmetry
can also be imbedded into the adjoint representation of SO(5) or fundamental representation of G2 as
in Pseudo-Goldstone models, in order to explore the dynamics of fundamental theory. A proof will be
given, that the introducing of this new custodial symmetry is equivalent to make choices of one of two
constraints on the gauge representation of fermions, by imposing one of which, the ZbLb̄L couplings
will be protected after spontaneously symmetry breaking(SSB). As an illustrated example, I will give a
concrete discussion based on left-right symmetric Higgsless model on warped AdS5 gravitational back-
ground. A natural result of applying the constraint to the bulk gauge group of the model, is that a
unconfined fundamental particle with fractional charge[3] appears simultaneously. This will be a dis-
tinguished prediction that can be tested at a near future Larger Hadron Collider(the LHC). Reference:
arXiv:hep-ph/0607146



(Dated: Oct 27th, 2009)

PACS numbers:

I. ABSTRACT

II. GAUGE BOSONS ON CURVED SPACE-TIME

Consider a 5D gauge theory in a fixed gravitational background

ds2 = (
R

z
)2(ηµνdx

µdxν − dz2) (1)

, where z is on the integral [R,R
′

]. In the RS type model, the typical value of R is ∼ 1
Mpl

, and R
′

is ∼ 1
TeV

.

The action for a gauge theory on a fixed background is given by

S =

∫

d5x
√
g[−

1

4
F a
MNF a

PQg
MP gNG] (2)

,
By putting in the AdS5 metric(Eq. 1), we get

S =

∫

dx4

∫ R
′

R

−
1

4
(
R

z
)[F a

µν
2 + 2F a

µ5
2] (3)

To quantize the gauge theory, we add the Rξ gauge fixing term

Sgf = −
∫

d4x

∫ R
′

R

dz
1

2ξ

R

z
[∂µA

µ − ξ
z

R
∂5(

R

z
A5)]

2 (4)

To read the propagator and the equation of motion of the gauge theory, we select the quadratic piece of gauge filed
in the action,

∫

d4x

∫ R
′

R

dz
R

z

1

2
Aµ[(∂

2 −
z

R
∂z(

R

z
∂z))η

µν − (1−
1

ξ
)∂µ∂ν ]Aν (5)

By making mode expansion Aa
µ(x, z) ∼ Aa

µψ(z)e
−ip·x, the equation of motion for the gauge boson wave function

ψ(z) will be become:

[z∂z(
1

z
∂z) + p2]ψ(z) = 0 (6)

where p2 = M2,
the general solution for the above equation is of the form

ψ(z) = z[αJ1(pkz) + βY1(pkz)] (7)

where J1(z) and Y1(z) are the Bessel function of the first kind and the second kind separately.



III. FERMIONS ON CURVED SPACE-TIME

A general bulk fermion action in a curved space-time is

Sf =

∫

dx5√g[
i

2
[Ψ̄ΓMDMΨ− D̄M Ψ̄ΓMΨ]−mΨ̄Ψ] (8)

where ΓM = eMa γa,ΓM = eaMγa,γa = (γµ, γ5), a is for Minkowski metric, and M = 0, 1, 2, 3, 5 is used to label
Curvered space-time metric gMN = eaMηabebN , gMN = eMa ηabeNb , where eMa is fünfbein, the generalization of the
vierbein to higher dimensions. DM = ∂M + 1

2ω
ab
Mσab is the covariant derivative including the spin connection term,

which is

ωab
M =

1

2
gRP [eaR(∂MebP − ∂P e

b
M )− ebR(∂MebP − ∂P e

b
M )] +

1

4
gRP gTS(eaRe

b
T − ebRe

a
T )(∂Se

c
P − ∂P e

c
S)e

d
Mηcd (9)

and σab = − 1
4 [γa, γb] is the ordinary 2nd antisymmetric tensor.

For the AdS5 metric in conformal coordinate,

ds2 = (
R

z
)2[ηµνdx

µdxν − dz2]

from which, we find the fünfbein eaM = R
z δ

a
M , eMa = R

z δ
M
a ,

√
g = (Rz )

5.
After some algebra reduction, we find

DµΨ = (∂µ + γµγ5
1

2z
)Ψ D5Ψ = ∂5Ψ (10)

Thus the 5-D action is

Sf =
∫

dx4dz(R
z
)5[ i2 [Ψ̄ΓM∂MΨ− ∂µΨ̄ΓMΨ]

+ i
2 [Ψ̄Γµγµγ5 1

2zΨ− (γµγ5 1
2zΨ)†γ0ΓµΨ]−mΨ̄Ψ] (11)

The fist term in the rectangular bracket is kinematic term while those in the second rectangular barcket is mass
term.

Considering that ΓM = eMa γa = R
z
γM , we find the kinematic term as

Sfkin =

∫

dx4dz(
R

z
)4

i

2
{[Ψ̄γµ∂µΨ− ∂µΨ̄γµΨ] + [Ψ̄γ5∂5Ψ− ∂5Ψ̄γ5Ψ]}

the mass term is

Sfm =

∫

dx4dz(
R

z
)5[−mΨ̄Ψ] =

∫

dx4dz(
R

z
)4[−

cf
z
Ψ̄Ψ]

where m = cf
R

is the bulk Dirac mass in the unites of the AdS5 curvature 1
R

.
we use the Chiral representation, namely

γµ =

(

0 σµ

σ̄µ 0

)

, µ = 0, 1, 2, 3 γ0 =

(

0 −12

−12 0

)

+γ =

(

0 +σ
−+σ 0

)

γ5 =

(

i12 0
0 −i12

)

(12)

the exact action is
∫

dx4dz(
R

z
)4[

i

2
{[Ψ̄γµ∂µΨ− ∂µΨ̄γµΨ] + [Ψ̄γ5∂5Ψ− ∂5Ψ̄γ5Ψ]}−

cf
z
Ψ̄Ψ]

In the Chiral representation, we introduce the Dirac fermions as

Ψ =

(

χα
ψ̄α̇

)

(13)

The dotted and undotted indices of a two component spinor are raised and lowered with the 2 × 2 antisymmetric

tensors εαβ = iσ2
αβ and εα̇β̇ = iσ2

α̇β̇
and inverse εαβ = −iσ2

αβ and εα̇β̇ = −iσ2
α̇β̇

:



χα = εαβχβ χ̄α̇ = εα̇β̇ψ̄
β̇ (14)

Their product are the Lorentz invariant scalars,

χψ = χαψα χ̄ψ̄ = χ̄α̇ψ̄
α̇ (15)

which are symmetric:

χψ = ψχ, χ̄ψ̄ = ψ̄ ¯chi (16)

substitute into action, we find

S =
∫

d5x(R
z
)4 i

2{[−χ̄σ̄µ∂µχ− ψσµ∂µψ̄ + ∂µψσµψ̄ + ∂µχ̄σ̄µχ] (17)

+ 1
2 [ψ∂zχ+ ∂zχ̄ψ̄ − χ̄∂zψ̄ − ∂zψχ] +

c
z
(ψχ+ χ̄ψ̄)} (18)

where the coefficient cf = mR, m is the bulk Dirac mass for the 4-component Dirac spinor.
The bulk EOM for the fermions in AdS5 background are

−iσ̄µ∂µχ− ∂zψ̄ + c+2
z

ψ̄ = 0 (19)

−iσµ∂µψ̄ + ∂zχ+ c−2
z

χ = 0 (20)

Perform the KK mode decomposition as what we have done to the gauge filed,

χ =
∑

k

gk(z)χk(x), ψ̄ =
∑

k

fk(z)ψ̄k(x) (21)

where the 4D spinors χk and ψ̄k satisfy the usual 4D Dirac equation with mass mk:

iσ̄µ∂µχk −mkψ̄k = 0 (22)

iσµ∂µψ̄k −mkχk = 0 (23)

Then we find the coupled equations of bulk fermion wavefunctions fk and gk:

f
′

k +mkgk −
c+ 2

z
fk = 0 (24)

g
′

k −mkfk +
c− 2

z
gk = 0 (25)

For the zero mode, the bulk fermion is decoupled and the corresponding wavefunctions are

f0 = αz2+c (26)

g0 = βz2−c (27)

For the non-zero mode, the bulk fermion can be decoupled as the second order of differential equations:

f
′′

k − 4
z
f

′

k +m2
k −

c2−c−6
z2 fk = 0 (28)

g
′′

k − 4
z g

′

k +m2
k −

c2+c−6
z2 gk = 0 (29)

(30)

The solutions of the massive bulk fermions wavefunctions are

fk(z) = z
5
2 (AkJc− 1

2
(mkz) +BkYc− 1

2
(mkz)) (31)

gk(z) = z
5
2 (CkJc+ 1

2
(mkz) +DkYc+ 1

2
(mkz)) (32)

(33)



The ordinary coupled first order of differential equations impose that Ck = Ak, Dk = Bk.
The left boundary terms in the variation of the action are:

δSδχ̄+δψ = 1
2

∫

d4x[(R
z
)4(δχ̄ψ̄ − δψχ)]|R

′

R (34)

δSδψ̄+δχ = 1
2

∫

d4x[(R
z
)4(−χ̄δψ̄ + ψδχ)]|R

′

R (35)

(36)

The total boundary terms are

δSbound =
1

2

∫

d4x(
R

z
)4[(δχ̄ψ̄ − χ̄δψ̄) + (ψδχ− δψχ)]R

′

R (37)

which agrees with the expression for flat space up the irrelevant factor of R4

z4 , namely

δSbound−flat =
1

2

∫

d4x[(δχ̄ψ̄ − χ̄δψ̄) + (ψδχ− δψχ)]L0 (38)

The boundary conditions required are those can make the boundary variation of the action vanish. The simplest
and most commonly adopted solutions are by fixing one of the two spinors (eg. ψ)to zero on the branes,

ψ|R,R
′ = 0, δψ|R,R

′ , (∂zχ+
c− 2

z
χ)|R,R

′ = 0 (39)

The last one is required by the bulk equations of the motion so that they are satisfied every where, including at the
end points of the interval. In the chiral limit(c− > 2), this is the usual orbifold boundary(If we assign a parity to χ and
ψ under y → −y, they have to have opposite parities in the bulk, due to the bulk term ψ∂zχ, thus if ψ is chosen to be
negative parity(Diriclet BC’s,ψ|R,R

′ = 0), then χ has to be positive (Neumann BC’s,∂zχ|R,R
′ = 0)).

Because there are two constraints associated with the solutions of two first order differential equations, we need
to impose one BC at each brane(the end of the interval or the fixpoint of the chain). The most general solution to
vanish the boundary variation on the boundary is the two spinors χ and ψ are proportional to each other:

ψ|R,R′ = (Mβ
αχβ +Nαβ̇

¯
χ

˙
β)|R,R′ (40)

where M,N are two matrices. Two simple solutions are

ψ|R,R′ = c(χα + iσµ
αβ∂µ

¯
χ

˙
β)|R,R′ (41)

For fermions belonging to a complex representation of the gauge group, gauge invariance requires that M = 0. For
those belonging to a real representation, M is allowed to be non-zero, and we can apply a mixed BC’s for two spinors,

(aψ + bχ)|R,R
′ = 0 (42)

where a, b is normalized to unit.

IV. THE HIGGSLESS ELECTROWEAK SYMMETRY BREAKING MODEL

One of the most mystery of the particle physics is the mechanism for electroweak symmetry breaking(EWSB). The
model here consists of bulk gauge group SU(2)L×SU(2)R×U(1)B−L. On the UV(Planck) brane, SU(2)R×U(1)B−L

is broken to U(1)Y , while on the IR(TeV) brane, where EWSB happen, SU(2)L × SU(2)R is broken to SU(2)D.

A. Gauge Sector

It has been pointed that extra dimensions may provide an alternative approach to unitarize the scattering of he
massive gauge bosons via the exchange of a tower of massive KK gauge bosons[1]. It’s convenient to choose[2] a
group of boundary condition’s (BC’s) corresponding to the symmetry breaking pattern:



UV (z = R) : ∂z(ALa
µ = 0), AR1,2

µ = 0, ∂z(g5RBµ + g̃5AR3
µ = 0), g̃5Bµ − g5RAR3

µ = 0

IR(z = R
′

) : ∂z(ALa
µ +ARa

µ ) = 0, ALa
µ −ARa

µ = 0, ∂zBµ = 0 (43)

The BC’s for the A5’s are just the opposite to that of the corresponding combination of the 4D gauge fields.
As showed before, by make mode expansion, all of the gauge bosons’ wave function will be of the form

ψA
k (z) = z(αA

k J1(qz) + βA
k Y1(qz)) (44)

we use k to label different KK modes, and A to the category of gauge bosons.
The KK expansion are[4]

Bµ(x, z) = 1
g̃5
a0γµ(x) +

∑∞
k=1 ψ

B
k (z)Zk

µ(x) (45)

AL3
µ (x, z) = 1

g5L
a0γµ +

∑∞
k=1 ψ

(L3)
k (z)Zk

µ(x) (46)

AR3
µ (x, z) = 1

g5R
a0γµ +

∑∞
k=1 ψ

(R3)
k (z)Zk

µ(x) (47)

AL±
µ (x, z) =

∑∞
k=1 ψ

(L±)
k (z)W k±

µ (x) (48)

AR±
µ (x, z) =

∑∞
k=1 ψ

(R±)
k (z)W k±

µ (x) (49)

(50)

where the 4D photon γ(x) has a flat wavefunction due to the unbroken U(1)Q symmetry, and the massive charged
and neutral gauge bosons are separately W k±(x) and Zk(x), the lowest of which are supposed to be the observed W
and Z .

By substitute KK expansion into the BC’s(81), we find the equations to determine the Kk tower for W and Z ,
separately,

(R0 −R
′

0)(R1 −R
′

1) = (R1 −R
′

0)(R
′

1 −R0) (51)

g25(R0 −R
′

0)(R1 −R
′

1) = (g25 + 2g̃25)(R1 −R
′

0)(R
′

1 −R0) (52)

Note: to simplify the problem, we have assumed that g5L = g5R.

M2
W ≈ 1

R
′2 log R

′

R

(53)

M2
Z ≈ g2

5+2g̃2
5

g2
5+g̃2

5

1

R′2 log R
′

R

(54)

To leading order in 1
R

and for log R
′

R
>> 1, the lightest mass spectrum for the charged and neutral gauge bosons

are separately
By introducing the UV and IR brane kinetic terms

LUV brane = −[ r4W
L2
µν + r

′

4
1

g2
5R+g̃2

5
(g5RBµν + g̃5WR3

µν )
2]δ(z −R) (55)

LIRbrane = −R
′

R [ τ
′

4 B
2
µν +

τ
4

1
g2
5R+g2

5L
(g5RWL

µν + g5LWR
µν)

2]δ(z −R
′

) (56)

(57)

and extend the BC’s to

For UV brane(z = R) : (∂z + rM2)ALa
µ = 0, AR1,2

µ = 0, (∂z + r
′

M2)(g5RBµ + g̃5AR3
µ = 0), g̃5Bµ − g5RAR3

µ = 0(58)

For IR brane(z = R
′

) : (∂z − τM2R
′

R
)(g5RALa

µ + g5LARa
µ ) = 0, g5LALa

µ − g5RARa
µ = 0, (∂z − τ

′

M2R
′

R
)Bµ = 0 (59)

where r and r
′

are kinetic term from the UV brane, while τ is the L−R kinetic term and τ
′

is the B − L kinetic term
on IR brane separately, all of above coefficients have dimensions of length.

To leading order in 1
R

and for log R
′

R
>> 1, the lightest mass spectrum for the charged and neutral gauge bosons

are separately.



M2
W ≈ 2g2

5L

g2
5L+g2

5R

1
1+ r

R log R
′

R

1

R
′2 log R

′

R

(1 + 2g2
5L

g2
5L+g2

5R

1
1+ r

R log R
′

R

3

8 log R
′

R

)(1 − g2
5R

g2
5R+g2

5L

τ

r+R log R
′

R

) (60)

M2
Z ≈ 2g2

5L

g2
5L+g2

5R

g2+g
′2

g2
1

1+ r

R log R
′

R

1

R′2 log R
′

R

(1 + 2g2
5L

g2
5L+g2

5R

g2+g
′2

g2
1

1+ r

R log R
′

R

3

8 log R
′

R

)[1− g2
5R

g2
5R+g2

5L

τ

r+R log R
′

R

(1− g2
5Lg

′2

g2
5Rg2 )](61)

(62)

At the nonlinear level, the B −L kinetic term τ
′

will contribute a negative contribution to the oblique parameters.

S ≈ 6π

g2 log R
′

R

− 8π
g2 (1− ( g

′

g
)2) τ

′2

(R log R
′

R )2
(63)

T ≈ − 2π
g2 (1 − ( g

′

g
)4) τ

′2

(R log R
′

R )2
(64)

B. Fermion Sector

We are also hope to understand how fermion masses can be generated in the Higgsless model, in other words, the
generation of fermion masses without a Higgs boson. The S parameter in the flat space version of the model has a
large positive contribution and we would consider a fermions on the AdS5 background[3].

The fermions have to be put into the bulk, since fermion need to connect with the TeV brane in order to feel the
effect of EWSB. On the other hand, they can not simply put on the TeV brane, otherwise they will for multiplets of
SU(2)D.

The left handed SM fermions are assumed to form SU(2)L doublets and the right handed ones SU(2)R dou-
blets(including right handed neutrino).

The smallest irreducible representation of the Lorentz group of a 5D bulk fermion is the Dirac spinor, which
contains two 4D Weyl(two component) like spinors (like a 4D Dirac fermions in the view point of Dimensional
Deconstruction). One have to make sure that in every 5D bulk fermion, there is only one single 4D Weyl spinor
zero mode, which will be identified as the usual SM fermions. Because the usual gauge bosons couplings to light
fermions is Left-Right unsymmetric, thus the zero modes for the light fermions have to be put in the TeV brane.
While the theory on the TeV brane is Vector-like so the up and down type fermions will have degenerate masses,
if naively add a mass term on the TeV brane. The up and down type fermions have to be splitting, and this can be
achieved by mixing the right handed fermions with those localized on the Planck brane.

To discuss the symmetry breaking of fermions on the AdS5 background, we have to apply the the boundary By
imposing the conventional [3] Dirichlet BC’s on both UV and IR branes:

ψR = 0 ψR
′ = 0 (65)

These BC’s allow for a chiral zero mode in the χ sector while the ψ has to be vanishing, thus we have one zero mode
wavefunction in the bulk27,

f0 = 0, g0 = βz2−c (66)

where c is an arbitrary bulk mass coefficient, the choose of which will affect the location of zero mode, whether close
to the UV brane(around z = R), or close to the IR(around z = R

′

). The normalization constant in front of the zero
mode wavefunction can be determined by

∫ R
′

R

dz(
R

z
)5

z

R
β2z4−2c = 1 (67)

where (R
z
)5 comes from volume

√
g on AdS5 background while z

R
from vierbein. We find the normalization constant

β =

√
1− 2c

Rc
√

R′1−2c −R1−2c
(68)

The fermion zero mode is localized near the UV brane when c > 1
2 (Can be seen by sending IR brane to infinity

R
′

→ ∞, beta has to be converges) and it will be elementary, while localized near the IR one when c < 1
2 (by send



UV brane to infinity R → ∞) and to be considered as composite bound states of the CFT modes. For c = 1
2 , the

wavefunction is flat.
We can also impose the other Dirichlet BC’s on both UV and IR branes:

χR = 0 χR
′ = 0 (69)

In which case, The BC’s will allow for a chiral zero mode in the ψ sector while the χ has to be vanishing, thus we
have one zero mode wavefunction in the bulk27,

f0 = αz2+c, g0 = 0 (70)

After normalization, we find the normalization constant of zero mode wave function of ψ as

α =

√
1 + 2c

R−c
√

R′1+2c −R1+2c
(71)

By the same trick, we find that a zero mode of ψ would have been localized on the UV brane for c < − 1
2 , and

localized on the IR brane for c > − 1
2 . Note we can only have one zero mode for the chiral gauge theory. For c = − 1

2 ,
the wavefunction is flat.

For the Left-Right handed Higgsless model at hand, we have two SU(2) doublet Dirac fermions for the leptons
and two separately for the quarks in the bulk for each generation. Each Dirac fermion has a bulk mass cL,R and a
Dirac mass MD on the TeV brane, which mixes the left and right handed bulk fermions. In addition, we assume that
there is a Dirac fermion localized on the UV brane that mixes with the ψR, in order to be able to split the masses of
the up and down type fermions.

In a left-right handed symmetric model, the left and right handed fermions are in the representation of (2, 1, 12 (B−
L)) and (1, 2, 12 (B−L)) of the bulk gauge group SU(2)L×SU(2)R×U(1)B−L

2
respectively. Because the bulk fermion

are Dirac fermions and thus every chiral SM fermions is doubled(adding right handed neutrino too).

1. Lepton sector

The left and right handed doublet of lepton are in representation of (2, 1,− 1
2 ) and (1, 2,− 1

2 ) of the bulk gauge
group SU(2)L × SU(2)R × U(1)B−L respectively.

(

νL
eL

) (

νR
eR

)

(72)

where

νL =

(

χνL
ψ̄νL

)

eL =

(

χeL

ψ̄eL

)

, νR =

(

χνR
ψ̄νR

)

eR =

(

χeR

ψ̄eR

)

(73)

L =

(

χνL
χeL

)

R =

(

χνR
χeR

)

(74)

eventually L correspond to the SM SU(2)L doublet, while R would correspond to the ”SM(extended)” right handed
doublet(i.e., including right handed electron and the ”extra” right handed neutrino).

and

L̄ =

(

ψνL
ψeL

)

R̄ =

(

ψνR
ψeR

)

(75)

L̄ is SU(2)L antidoublet partner and R̄ is that of R, needed to for a complete Left and Right handed 5D Dirac spinor
separately.



2. Quark sector

The left and right handed doublet of quark are in representation of (2, 1, 16 ) and (1, 2, 16 ) of the bulk gauge group
SU(2)L × SU(2)R × U(1)B−L

2
respectively.

(

uL

dL

) (

uR

dR

)

(76)

where

uL =

(

χuL

ψ̄uL

)

dL =

(

χdL

ψ̄dL

)

, uR =

(

χuR

ψ̄uR

)

dR =

(

χdR

ψ̄dR

)

(77)

QL =

(

χuL

χdL

)

(UR, DR) = (ψuR ,ψdR) (78)

eventually QL correspond to the SM SU(2)L quark doublet, while ψuR and ψdR would correspond to the SM right
handed quark singlet.

and

Q̄L =

(

ψuL

ψdL

)

(ŪR, D̄R) = (χuR ,χdR) (79)

are corresponding anti-let partners needed to form the completes 5D spinors.
Finally a localized 4D Dirac spinor that coupled to ψuR on the UV brane SU(2)L ×U(1)Y at R, has to be included,

(ξuR , η̄uR) (80)

3. Applying Boundary Conditions for Fermions

It’s convenient to choose[3] a group of boundary condition’s (BC’s) corresponding to the symmetry breaking
pattern:

UV (z = R) : ψL = 0, χR − iκσµ∂µψ̄R = 0,

IR(z = R
′

) : ψ̄L +MDR
′

ψ̄R = 0, χR −MDR
′

χL = 0 (81)

C. Gauge Fermion interaction term

The bulk gauge interaction in the unitary gauge comes from

Skin =
∫

d5x(R
z
)4 i

2{[−χ̄σ̄µDµχ− ψσµDµψ̄ +Dµψσµψ̄ +Dµχ̄σ̄µχ] (82)

+ 1
2 [ψDzχ+Dzχ̄ψ̄ − χ̄Dzψ̄ −Dzψχ]} (83)

where

Dµ = ∂µ − ig5LALa
µ T a

L − ig5RARa
µ T a

R − ig̃5
Y
2 Bµ

Dz = ∂z (84)

Note that the 5th covariant derivative is just the ordinary derivative in the unitary gauge, while for a general gauge
choice such as Rξ gauge, it will be

Dz = ∂z − ig5LA
La
5 T a

L − ig5RA
Ra
5 T a

R − ig̃5
Y

2
B5 (85)

where AL
5 , AR

5 and B5 are separately the 5th components of the bulk gauge field and play roles of the goldstone
bosons relative to the corresponding gauge bosons in 4D viewpoint.



The UV brane kinetic terms come from

SUV kin =
∫

d5x(Rz )
4(−i)κδ(z −R)ψσµDµψ (86)

or

SUV kin =
∫

d5x(R
z
)4(−i)κδ(z −R)χ̄σ̄µDµχ (87)

but can not both.
The κ will depend on the flavor in each generation, with κu,κd labeled separately. Because SU(2)L symmetry is

unbroken on UV brane, we have

κuL = κdL (88)

The left κuR and κdR are independent.

D. Zbb̄ vertex

The remaining problem in this kind of Higgsless model is how to get a large enough top quark mass without
messing up the Zblb̄l couplings. One of the approaches is suggested by a combination of custodial symmetry and
a L ←→ R parity symmetry that protects the ZblZ̄l couplings. This enhanced custodial symmetry suppresses cor-
rections to the Zblb̄l vertex. A scheme[7] proposed to solve the problem is as follows: The left-handed(LH) top and
bottom quarks are part of a bi-doublet of SU(2)L × SU(2)R, while the right-handed(RH) top is a singlet and the RH
bottom is part of an SU(2)R triplet.

In the SM, the Higgs sector has an SU(2)L × SU(2)R symmetry which is broken down to a diagonal SU(2)D
custodial symmetry by the Higgs Vev. SU(2)L is gauge symmetry, while SU(2)R is a global symmetry, which is
broken by Yukawa couplings and the hypercharge gauge coupling. Yukawa couplings would not break the custodial
symmetry if the RH fermions were doublets of SU(2)R, but this is impossible, otherwise the top and bottom quark
would have to be mass degenerate. In the Higgsless model at hand, the SM is embedded in a 5D Anti-de Sitter space
(AdS5), a custodial symmetry can be achieved by incorporating a bulk gauge symmetry SU(2)L×SU(2)R×U(1)B−L

2
.

Here the SU(2)R symmetry is gauge symmetry. On the UV brane, the SU(2)R × U(1)B−L is broken to U(1)Y ,
which is in according with the AdS/CFT correspondence, namely a global symmetry of the strongly coupled CFT
corresponds to a gauge symmetry in AdSR. On the TeV Brane, SU(2)L × SU(2)R is broken down to an SU(2)D
custodial symmetry.

For the 3rd generation quarks,

ψL =

(

tL
bL

)

ψR =

(

tR
bR

)

(89)

where

tL =

(

χtL

ψ̄tL

)

bL =

(

χbL

ψ̄bL

)

, tR =

(

χtR

ψ̄tR

)

bR =

(

χbR

ψ̄bR

)

(90)

The SM fermions can be reproduced by the assignment the following BC’s(UV, IR):

χL =

(

χtL(+,+)
χbL(+,+)

)

ψ̄L =

(

ψ̄tL(−,−)
ψ̄bL(−,−)

)

, χR =

(

χtR(−,−)
χbR(∓,−)

)

ψ̄R =

(

ψ̄tR(+,+)
ψ̄bR(±,+)

)

, (91)

where + stands for a Neumann BC and − stands for a Dirichlet BC. By imposing BC’s on the branes, the SM zero
modes are reproduced. The LH and RH components of a 5D bulk fermion must always have opposite BC’s.

There is a tension between having heavy top quark and small corrections to the couplings of the LH b with the Z
boson. In order to enhance the mass of top, one has to localize the it as close as possible to the IR brane.However
EWSB also happens there which distorts the wavefunctions of W and Z . On the other hand, a massive LH b

′

quark
presents in the SU(2)R doublet that also contains the RH t, which mixes with the b via the TeV Dirac mass responsible
for the t mass. Because a heavy top mass will require Dirac mass on the TeV brane to be very large, a larger mixing
between b and t is generated.

The combination of custodial symmetry andL ←→ R parity symmetry forms a new custodial symmetry SU(2)D×
PLR, to protect the Zblb̄l couplings. Note PLR, which is the discrete parity interchanging the two SU(2)’s, is already a



new symmetry beyond the SM. We can assume a beyond the SM sector, with a global O(4) ∼ SU(2)L×SU(2)R×PLR

symmetry, then is broken to O(3) ∼ SU(2)D × PLR. The breaking SU(2)R × U(1) 1
2
(B−L) → U(1)Y on the UV brane

breaks PLR, so that this new symmetry is only approximate(Left-Right non-symmetric).
If fermion is a eigenstate of PLR with eigenvalue +1, then

TL = TR, T 3
R = T 3

R (92)

When global O(4) is broken to O(3), PLR is still kept, however SU(2)L × SU(2)R is broken to diagonal custodial
symmetry SU(2)D, which protect the charge QL+R = QL +QR. On the other hand, the shifts in QL and QR must be
equal since parity invariance.

δQL + δQR = 0, δQL = δQR (93)

thus the charges are individually protected,

δQL = δQR = 0 (94)

While Q = T 3 + Y , this means the W 3
L coupling is unchanged δT 3

L,R = δR3
R. Take a special case as an example,

fermions with T 3
L = T 3

R = 0 will never be able to couple to W 3
L at all. More generally, T 3

L = T 3
R

Remember that bL belong to representation of (2, 1, 1
6 ), in the bulk gauge group SU(2)L × SU(2)R × U(1) 1

2
(B−L).

TL =
1

2
, TR = 0;T 3

L = −
1

2
, T 3

R = 0 (95)

satisfies neither of the requirements by new custodial symmetry as follows:

(a)TL = TR, δQL = δ(Q)R = 0 or (b)TL = TR = 0, δQL = δQR = 0 (96)

By including the new PLR parity symmetry, we can use an assignment for bL quantum numbers:

TL = TR =
1

2
, T 3

L = T 3
R = −

1

2
(97)

This will guarantee that ZbLb̄L doesn’t receive correction from the new physics beyond SM. This also simultaneously
assign top the quantum numbers in order to put tL in a SU(2)L doublet with bL:

TL = TR =
1

2
, T 3

L = −T 3
R =

1

2
(98)

However, we know in SM, the corresponding quantum number for top is

TL =
1

2
, TR = 0, T 3

L =
1

2
, T 3

R = 0 (99)

Thus we have to give up SU(2)L doublet representation. We can extend bL in the representation (4, 23 ) of global
symmetry O(4)×U(1) 1

2
(B−L) Namely, this can be done by embedding bL, tL into a bi-doublet (2, 2, 23 ) of bulk gauge

symmetry SU(2)L×SU(2)R×U(1) 1
2
(B−L). Consequently, the RH fermions can be either singlets or triplets of SU(2)L

and/or SU(2)R.
One of two possible selection of the quantum numbers of 3rd fermion representation in SU(2)L × SU(2)R ×

U(1) 1
2
(B−L), can be

(tL, bL) ∈ (2, 2,
2

3
) ∼ ΨL, bR ∈ (1, 3,

2

3
) ∼ ΨR, tR ∈ (1, 1,

2

3
) ∼ tR (100)

ΨL = (qL, QL) =

(

tL XL

bL TL

)

, ΨR =





XR

TR

bR



 , tR (101)

where all the fermion fields are bulk fields.



TABLE I: Quantum numbers of the bulk fermions

Fields XL TL tL bL XR TR bR tR
T 3
L

1

2
−

1

2

1

2
−

1

2
0 0 0 0

T 3

R
1

2

1

2
−

1

2
−

1

2
1 0 -1 0

The right handed top tR is in a bi-singlet, which doesn’t contain any field that can mix with bL: in other words,
the t mass will not induce any mixing in the b sector.

Note: Because

Q = T 3
L + Y, Y = T 3

R +
1

2
(B − L) (102)

It’s easy to check that the extra fermions T and X will carry a fractional charge 2
3 and 5

3 , separately.
The quantum numbers of various fermions fields are shown in talbe
In order to be able to enhance the new custodial symmetry to protect the ZbLb̄L, ΨR ∼ (1, 3, 23 ) should be com-

pleted to a full O(4) ∼ SU(2)L × SU(2)R × PLR representation ∼ (3, 1, 23 ) ⊕ (1, 3, 23 ). In other words, we need to
complete the representation with a SU(2)L triplet, it component with TL = QR − Y = −1 will also mix with bL,
which will cancel out the contribution of the SU(2)R triplet(whose component with T 3

R = QR − Y = −1) to ZbLb̄L.
This can be introduced by mixing tL and TL in (2, 2, 23 ), to combine as a SU(2)L triplet.

The BC’s those we impose are (UV,IR):

χqL(+,+), χQL(−,+), ψXR(−,+), ψTR(−,+), ψbR(+,+), ψrR(+,+) (103)

where + and − are separately represents Neumann and Dirichlet BC.
The localized mass term on the IR brane is of the form:

LIR = M3[
1√
2
TR(tL + TL) + bRbL +XRXL] +

M1√
2
tR(tL − TL) +H.c. (104)

The bulk gauge symmetry SU(2)L × SU(2)R is broken to the unbroken SU(2)D on the IR brane, tL and TL will be
mixed, and we get a SU(2)L singlet t

′

L as well as a SU(2)L triplet Ψ
′

L:

tL − TL√
2

= t
′

L ∈ (1, 1,
2

3
),





XL
1√
2
(tL + TL)

bL



 = T
′

L ∈ (3, 1,
2

3
) (105)

The SU(2)L triplet Ψ
′

L is just what we need complete with ΨR to form the global O(4).

[1] See DC’s review on D0D̄0 mixing for more detail
[2] Note: this Z2 symmetry is very similar to the U(1)A symmetry in QCD chiral gauge theory, the eigenfunction is just γ5 with

± as the eigenvalue of Right and Left parity.
[3] Note: particle with fractional charge in 2+1 spacetime will have fractional statistics due to topological quantization, which

can be described by Jones Ploynomials for SU(N) symmetry. While, in the real world 3+1 spacetime, there is no annoy due to
the angular momentum continuation. What we confront firstly in particle physics is the U(1)A problem in QCD. The U(1)A
symmetry is spontaneously broken(SSB) at tree level but explicit broken at loop level due to chiral anomaly from fermions’
triangle loops.In massless quark limit, by introducing a gauge-variant but conserved 2+1 Chern-Simons term, a conserved
axial currents is reached, thus the U(1)A is SSB again and some goldstone boson must appear due to goldstone theorem.
However this is no observation for this goldstone when analyzing QCD hadron spectrum. Luckily Kogut and Susskind found
that the missing (pseudo-)goldstone(one of the so called goldstone dipole, with only derivative term at tree level) degree of
freedom due to SSB coupled only to the gauge-variant term, which is not physically observable. Another brilliant solution to
the U(1)A problem is solved by t’Hooft by introducing instanton. See Yuhsin’s note
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