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Abstract

In this report, we discuss the physics of strongly coupled gauge theory, from ordinary space-time to
super-space. Firstly we briefly review the topological objects of Yang-Mills theory in ordinary space-time,
where we focus on the electric-magnetic duality. Later on we extend our discussion to Super Yang-Mills
with matter added, where we discuss holomorphic gauge couplings and Seiberg duality. Finally we
discuss Seiberg-Witten theory. The application to gauge-mediated dynamical SUSY breaking based on
MSSM is straightforward. In above discussion, we will mainly focus on SUSY with N ≤ 2. [3][4]
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I. TOPOLOGICAL FIELD THEORY IN PARTICLE PHYSICS

A. 1+1 Dimension solitons

We have the experience in 1+1 Dimensions for a real scalar field theories with a quartic or sine-Gordon potential.

L =
1

2
φ̇2 − 1

2
(∂xφ)

2 − V (φ) (1)

where

V (φ) =
λ

4!
(φ2 − v2)2, or V (φ) = A(1− cos

2πφ

v
) (2)

The important physical results of these model is that the vacuum of the ground states are degenerate(two fold for
the λφ4 potential and infinity for the sin-Gordon model).

Consider small fluctuation around the vacuum, namely

φ = v + φ̂ (3)

expands the potential of the scalar field in perturbative way, we find the mass(m2 = ∂2V
∂φ2 >= 0) of the correspond-

ing scalar particle, due to fluctuation or excitation of the scalar field, as well as three and four point vertices, if the
mass squarem2 < 0, these particle are called tachyons, which are not physical and would make the vacuum unstable.

The fact that the vacuum are degenerate, results in(by solving Euler-lagrange equation) these models posses highly
non-trivial static solutions, that interpolate between the vacuum, which are called solitons or kinks, which are

φ(x) = v tanh
1

2
m(x− x0), φ(x) =

2v

π
arctan(em(x−x0)) (4)

for λφ4 and sin-Gordon potentials, separately. The difference is the first one is a renormalizable one while the second
is non-renormalizable. Where x0 is position transition between two nearest vacuum take place.

The solution of solitons(φ(x)) are basicly located at the vacuum value(v), and can be approximated by a Heaviside
function

φ(x) = vθ(x − x0) for |x− x0| ≫ Γ ∝ 1/m (5)

which interpolate between two nearest vacuum, where the kinetic term and potential approach vanishes at spatial
infinity(|x| → ∞). Moreover the solution has finite positive energy and it turns out to be antipropotional to the self
couplings.

E ∝ m3

λ
(6)

which means the solitons are very heavy and massive in the perturbative limit. In the perturbation language, we are
dealing with a theory describing elementary particles with massive gap due to light fluctuation of vacuum. There
is an ambiguity due the the ± sign in front of the φ(x), which leads to two kind solutions, solition( ∂

∂xφ(x) > 0)

and anti-soliton( ∂
∂xφ(x) < 0). The picture of the theory can be sequences of solitons and anti-solitons, in the ”dilute

gas” approximation, means the solutions of them only valid for widely separated objects(|x10 − x20| ≫ 1
m ). The

anti-slotions are anti-particle of the solitions like in a complex scalar field, and the vacuum can be distinguished by
label it with the difference between the number of solitons and anti-solitions(∆n = n+ − n−) for a potential with
symmetry.



If we consider the chiral fermions in a soliton background, namely we couple the fermions to the solition by the
usual Yukawa coupling.

L = φ̄(γµ∂µ + gφ(x))φ (7)

After spontaneous symmetry breaking of scalar field φ, it take the vacuum expectation value v every, the fermion
also get a mass and become massive(mφ = gv) and the Hamiltonian of fermions come in pairs ±E with |E| ≥ m,
”electrons” and ”holenons” with positive and negative energy separately. The chiral symmetry of the fermions are
broken due to mass term of fermions. But the introducing of the opposite vacuum solution will restore the symmetry,
in other words, making the Yukawa couplings term chiral invariant again. Thus the chiral invariant vacuum state of
fermions are a Z2 degenerate vacuum, with φ and −φ corresponding to the same energyE for electrons or −E for the
holenons. We are also interested in the zero modes(with zero energy, and electron and holenons are the same particle
since ±E = 0) of the fermions in a solition background. It turns out to be that the only normalisable(non-divergent)
zero mode state(wavefunctions) of fermions are spin up fermion (positive parityP = +1) localized at the transition
position x0 of the soliton and spin down fermion(negative parity P = −1) localized on the transition position of x0
of the anti-solition.

For the concreteness, the wavefunctions of zero modes(Because they have eigen energy E = 0, they do not have
effect on the energy whether the states are filled or not) of fermion are

φ↑ ∼ cosh
m

2
(x − x0)

−2 m
mψ

1√
2

(

1
1

)

φ↓ ∼ cosh
m

2
(x− x0)

−2 m
mψ

1√
2

(

1
−1

)

(8)

which are named Jackiw-Rebbi modes and they are both chiral eigen-state and related by a Z2 discrete symmetry.

B. 1 + n(n ≥ 2) solitons - Domain Wall or Membrane or 2-brane

The higher dimensional extension of solitons(kinks) are domain walls, which are transition regions between do-
mains with different eigen-values ∆n to label the different(degenerate) vacuums, they are related by a discrete sym-
metryx. The chiral fermions inside the domains are massive and on the domain walls they are massless, along the
domain wall, we view them as lower dimensional Dirac fermions.

The first (2+1) domain walls are vortices or strings. For a complex scalar field(or two component real, where
φ = φ1 + iφ2),

L = −∂µφ∗∂µφ− λ

2
(φ∗φ− v2

2
)2 (9)

The vacuum manifold(moduli) is a circle S1, with

φ→ v√
2
eiϕ (10)

,
where ϕ is the polar angle in coordinate space. This complex scalar field theory in (2+1) dimension, with a U(1)

global invariance, characterize a vortex, and its energy E =
∫

dx2(~∂φ∗~∂φ + V (φ, φ∗)) is logarithmically divergent.
The approach to cure the divergence is by making the U(1) global invariance a local one, namely it is necessary to
introduce gauge field to cure the logarithmic divergent of the energy.

∂φ→ Dµφ = (∂µ − ieAµ)φ (11)

The covariant derivative ~Dφ kinetic term will give a good converge than the ordinary derivative~∂φ kinetic term. It is

clear that the logarithmic divergent is absorbed in the gauge field ~A. Intuitively speaking, the gauge field has to be
along in the direction of the phase ϕ. It turns out that

Ai → −1

e
ǫij
xj
r2

(12)

and as expected it has only a ϕ component,

Ar → 0, Aϕ → 1

er
(13)



and it is a pure gauge asymptotically and the field strength vanishes,

~A→ 1

e
~∂ϕ Fij → 0 (14)

Thus the gauge filed ~A is a circular one and leads to a vortex with quantized magnetic flux,

Φ =

∫

S

~Bd~σ =

∫

C=∂S

~Ad~x ≡ ngm =
2π

e
n =

1

e
(ϕ(r, θ2π) − ϕ(r, θ)) (15)

which is called topological conservation law for the original complex scalar field. The vortex carries a quantized
magnetic flux number n, as the quantum number to label the different topological classes. The general total flux will
be of the form (n1 + n2 + n3)

2π
e .

The choices for φ and A are solutions of the Euler-Lagrange equations asymptotically, the gauge field A runs into
a singularity when we extend them naively towards the origin. Instead we can make an ansatz for φ and A and try
to solve the problem.

The model we have discussed so far is a 2+1 dimensional Abelian Higgs Model with gauge strength term added,

L = −Dµφ
∗Dµφ− λ

2
(φ∗φ− v2

2
)2 − 1

4
FµνF

µν (16)

then the energy of the model(static solution) is

E =
∫

dx2[Diφ
∗Diφ+ 1

2F
2
12 +

λ
2 (φ

∗φ− 1
2v

2)2]

=
∫

dx2[(∂iφ)
2 + e2φ2 ~A2 + 1

2B
2 + λ

2 (φ
∗φ− 1

2v
2)2]

=
∫

dx2[(∂iφ± eǫijAjφ)
2 ± eφ2B + 1

2 (B ±
√
λ(φ2 − v2

2 ))2 ∓
√
λ(φ2 − v2

2 )B] (17)

it turns out that before and after the spontaneously symmetry breaking, the massive scalar(Higgs) and the massive
vector gauge boson have the mass

mφ =
√
2e

v√
2
= ev, mA =

λ

2
v2 (18)

from the term −λ
2 v

2|φ|2 and e2 v2

2
~A2 separately. If we make a special choice, namely λ = e2, the mass of the Higgs

will be the same as that of vector gauge boson. After SSB, the energy will be of the form

E =

∫

d2x[(∂iφ± eǫijAjφ)
2 ± e

v2

2
B +

1

2
(B ±

√
λ(φ2 − v2

2
))2] ≥ e

v2

2
|
∫

Bd2x| (19)

and has a lowest bound, which can be saturated with two equation of motions and it is

E ≥ e
v2

2
n
2π

e
= nπv2 = n

πm2

e2
(20)

The energy will be typically proportional to m2

g2 for a heavy topological objects in the perturbative viewpoint.

In a brief summary so far, it is the requirement of finite energy led to the configuration of vacuum state to fall
into disjoint class, and the total configuration can be classified into different equivalent classes. Interpolating these
classes have to include configuration with divergent energy.

To be general, a gauge symmetry group G is spontaneously broken down to one of its subgroup H , the vortex
quantum flux number n form a group, G2 = π1(G/G1), called first homotopy group, is a mapping from S1 into the
coset G/G1, which measures the non-contractibility of the coset. For example, an Abelian U(1) gauge symmetry is
SSB to identity 1, π1(S

1) = π1(U(1)/1) ≡ π1(U(1)) = Z. An non-Abelian SU(2) gauge symmetry is SSB to a Z2

symmetry, π1(SU(2)/Z2) ≡ π1(SO(3)) = Z2.



C. Physics of CS3 in (2+1)Dimensional space-time

In the lagrangian formalism,

SCS = c

∫

dx3ǫµνρA
µ∂νAρ = c

∫

dx3AdA = c

∫

dx3 ~A · ~∇× ~A = c

∫

dx3 ~A · ~B (21)

On the other hand, the gauge kinetic term is

Skin = −1

4

∫

dx3FµνF
µν =

1

2

∫

~A · [∇2 ~A2 − ~∇(~∇ · ~A)] (22)

By variation of A, it is easy to get

∇2 ~A− ~∇(~∇ · ~A) = 2c ~B (23)

Imposing a curl gradient on both sides, we find

∇2 ~B = 4c2 ~B (24)

Thus if c 6= 0, the (2 + 1) spacetime photon will become massive.
The equation of motion is

∂µF
µν = jν + Jµ

CS (25)

and the Chern-Simons current is

Jµ
CS = 2cǫµνρ∂νAρ = 2c~∇× ~A = 2c ~B (26)

The conservation law of Chern-Simons current is the magnetic field.

∂µJ
µ
CS = 0 =⇒ ~∇ · ~B = 0 (27)

Integrate out magnetic field of Eq.[21], according to the topological quantization conditions, we have

LCS = cngm

∫

d~x · ~A = c
2π~n

e

∫

d~x · ~A ≡ q

∫

d~x · ~A (28)

Where q is the effective charge of the fields, thus the CS coefficient is quantized as

c =
qe

2π~n
(29)

In another viewpoint, consider self-links of gauge field, after integrating out two closed line integral, or equivalent
overlap of two flux from the corresponding magnetic field, we get the topological quantization rule as

c(
2π~n

e
)2 = q

2π~n

e
(30)

This implies that if the effective charge is fractionalized, then it will lead to fractional statistics. In other words, if
we have fermions satisfying fermion statistics, once turn on CS term, electron will become bosons satisfying boson
statistics. We may call this effective fractional charge particle Anyon.

For example,
(a)if q = e

3 , we will have a

2

3
πn (31)

phase difference.
(b)if q = 1

2e, fermion, for n ∈ odd.
(c)if q = e, boson.



D. (3+1)Dimensional non-Abelian gauge theory

We consider a general lagrangian of (3+1) dimensional non-Abelian gauge theory

L = −1

2
(Dµφ

a)2 − λ

8
(φa2 − 1

2
v2)2 − 1

2
F a
µνF

µνa (32)

where both scalar field(O(3)) and gauge field are SU(2) invariant.

φ = φaτa, Aµ = Aa
µτ

a, τa =
σa

2
(33)

and the non-Abelian covariant derivative and the field strength are

Dµφ
a = ∂µφ

a + ǫabcAµbφc, Fµνa = ∂µA
a
ν − ∂νA

a
µ + ǫabcAb

µA
c
ν (34)

The classical solution of the model turns out to be a ”hedgehog”, which has a zero in the origin point. In addition,
it has a magnetic charge(so called ’t Hooft and Polyakov monopole) inside.

The energy of the monopole is

E =
∫

d3x[ 12 (
~Dφa) + λ

8 (φ
a2 − 1

2v
2)2 + 1

2 (
~Ba)2] (35)

=
∫

d3x[ 12 (
~Dφa ± ~Ba)2 + λ

8 (φ
a2 − 1

2v
2)2] + 2π

e v ≥ 4π
e2 mV (36)

WhereBa
i = 1

2ǫijkF
a
jk , and the bound is saturated for vanishing potential, in the PS(Prasad and Sommerfield)limit

λ = 0. After the SU(2) gauge symmetry is spontaneously broken down to U(1) by vacuum expectation value of an
isovector field φa

The corresponding eigen-state of the monopole is so called BPS states with a mass

Mmon =
4π

e2
mV (37)

which is anti-proportional to the gauge Higgs couplings as well as the gauge bosons mass.

E. The role of CS3 in 3+1 dimensional space-time physics and the Instanton

The action of 3+1 dimensional gauge field can be written as

S = −
∫

d4x1
4F

a
µνF

µνa (38)

we know that in order to make the energy non-divergent, we need to introduce gauge field to absorb the divergent
and finally lead to the finite energy density, and a BPS bound,

S = −
∫

d4x
1

4
F a
µνF

µνa ≥ 8π2

g2
(39)

On the other hand, the action can also be simplified as

S =
∫

d4x[− 1
8 ((F

a
µν )

2 + (F̃ a
µν)

2)] = − 1
8

∫

d4x(F a
µν − F̃ a

µν) +
1
4

∫

d4xF a
µν F̃

µνa (40)

= − 1
8

∫

d4x(F a
µν − F̃ a

µν) +
8π
g2 ∂µK

µ (41)

where Kµ is the gauge-variant but conserved 2+1 Chern-Simons current with the form

Kµ =
g2

16π2
ǫµνρσ(A

a
ν∂ρA

a
σ +

2g

3
ǫabcAa

νA
b
ρA

c
σ) (42)

The surface integral on the S3
∞ of Chern-Simons current term turns out to be

8π

g2

∫

d4xKµ =
8π

g2

∫

d3xK⊥ =
8π2

g2
(43)



which is just the minimal value from BPS bound.
Thus we can conclude that the BPS bound is saturated when the gauge field strength is selfdual,

F a
µν = F̃ a

µν (44)

and the Bianchi identity is automatically fullfilled,

DµFµν = DµF̃µν = 0 (45)

In the case, the lagrangian is a topological quantity proportional to 8π2

g2 , called Pontryagin index, which is inde-

pendent of configuration of gauge fields.
Then as before, we consider the chiral fermions on these gauge field background including instanton. For the

massless fermions, the vector and axial vector current are current at tree level, namely

∂µJ
µ = 0, ∂µJ

µ5 = 0 (46)

where

Jµ = ψ̄γµψ = JµL + JµR, J5
µ = ψ̄γµγ

5ψ = JµR − JµL (47)

At the loop level, the triangle fermion loop will contribute a nonzero part which is independent of regularization
method. The ambiguity in γ5 are removed by requiring that the Ward-Takahashi identity are valid for the vector
gauge filed, so that the vector currents are still conserved at the loop level, but at the same time the axial vector
currents are not.

∂µ < 0|Jµ(x)|k1k2 >= 0

∂µ < 0|J5
µ(x)|k1k2 >= − g2

16π2 < 0|F a
µ F̃

a
µ |k1k2 > (48)

The non-conserved axial current is just the Adler-Bell-Jackiw anomaly,

From above, we already have
∫

d4xF a
µν F̃

µνa from the instanton, thus the axial charge will be

Q5 =

∫

d3xJ5
0 = nR − nL (49)

where nR and nL are respectively winding numbers of right and left handed zero mode fermions.
The difference ∆n = nR−nL

2 means that the total flipped helicity of chiral fermions. In other words and to be
concrete, the chiral fermion on the gauge field can feel the effect of instanton, and the instanton creates nL right
handed(LH) fermions and annihilates nR reft handed(RH) fermions.

The instanton not only changes the winding number by one, but also creates a LH particle and annihilates a RH
anti-particle. For the anti-instanton it is vice versa.

The instanton is related to θ vacuum and we can included into the effective lagrangian with e±iθ for instanton and
anti-instanton separately. To get the complete lagrangian at the same order, we have to add the topological surface
term to get a complete one for gauge field,

L = −1

4
F a
µνF

µνa +
g2

8π2

iθ

4
F a
µν F̃

µνa (50)

Because of the couplings to FF̃ , there are new sources of the gauge current. Varying the action with respect to Aµ,
yields the general equation of motion,

∂µF
µν = jν ∂µF̃

µν = kν (51)

where

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], F̃µν =
1

2
ǫµνρσFρσ (52)

with current

jν =
g2

8π2

i

4
∂µ(θF̃ νµa) (53)



and the four vector potential

Aµ = (A0, ~A) (54)

written in non-covariant form in terms of electric and magnetic sources, the currents become jµ = (ρ,~j), kµ =

(σ,~k), from the two of Maxwell’s equation

~∇ · ~B = 0,
∂ ~B

∂t
+ ~∇× ~E = 0 (55)

follows from the Bianchi identity dF = 0.

In the presence of magnetic source, e.g., a point magnetic monopole of unit charge, the magnetic filed ~B is still

given by the curl of vector potential ~∇× ~A, but the diverse is nonzero ~∇ · ~B 6= 0.
the equations above are promoted to

∂µF̃
µν =

1

2
ǫµνρσ∂µF̃

ρσ = kν (56)

thus

1

2
ǫ0µρσ∂µF̃

ρσ = −δ3(~x) (57)

One can impose the Bianchi identity ∂µF̃
µν = 0 in the electric theory by introducing a Lagrange multiplier - a dual

gauge vector field ADµ which couples to the monopole,

LD =
1

8π
ADµǫ

µνρσ∂νFρσ =
1

8π
F̃ ρσ
D Fρσ =

1

16π
Im(F ρσ

D + iF̃ ρσ
D )(F ρσ + iF̃ ρσ) (58)

we have

ρ ∼ θ~∇ · ~B + ~B · ~∇θ
~j ∼ θ̇ ~B + ~∇θ × ~E (59)

The first term in ρ is responsible for the Witten effect-monopoles in the electric field or nono-zero CP angle carry

electric charge. The second term in~j give a Hall-like contribution to the current which is perpendicular to the applied
electric field.

in the canonical normalization basis, it is

L = − 1

4g2
F a
µνF

µνa +
iθ

8π2

1

4
F a
µν F̃

µνa (60)

Thus for a pure gauge theory, we have two nature constants, namely gauge coupling g and θ vacuum, both of
which are in principle observable. We can define

τ =
4π

g2
+
iθ

2π
(61)

which is the holomorphic variable in supersymmetry theories(SUSY). It is symmetric under θ vacuum translation by
integer times of 2π, namely τ → τ + 1, which is the so called T duality

The Lagrangian with the holographic gauge coupling can be written as

L =
1

16π
Imτ(FµνF

µν + iFµν F̃
µν) =

1

32π
Imτ(Fµν + iF̃µν)

2 (62)

combing above Lagrangian and that coupled to dual magnetic gauge vector field LD, and integrate out the original

electric fields Fµν + iF̃µν , gives the EOM for the dual electomagnetic fields which couples to the monopole

Fµν + iF̃µν = − 1

τ
(Fµν

D + iF̃µν
D ) (63)

substituting above EOM into the Lagrangian, we get one for the pure dual electromagnetic fields

LD =
1

32π
Im(− 1

τ
)(Fµν

D + iF̃µν
D )2 =

1

32π
ImτD(Fµν

D + iF̃µν
D )2 (64)



where

τD = − 1

τ
(65)

is the holomorphic gauge coupling in the dual magnetic theory, means the couplings in the dual electric and magnetic
theories are inverse proportional to each other, when electric theory is strongly coupled in the non-perturbative
region, as a result the perturbative approach fails, meanwhile the corresponding dual magnetic theory arise, which
is a weakly coupled gauge theory and thus an appropriate descriptions for the same theory in perturbative sense.

Note that FµνFµν = −F̃µνF̃µν = −2( ~E2 − ~B2), the generalize EOM are invariant under electric-magnetic dual-
ity(The quantitative definition is the so called S duality, namely τ → τD = − 1

τ ),

Fµν → F̃µν , F̃µν → −Fµν , jµ → kµ, kµ → −jµ (66)

which correspond to interchanging the electric and magnetic fields as

~E → ~B ~B → − ~E (67)

The lagrangian can be simplified as

L = 1
2 (
~Ea − ~Ba)− θg2

8π2
~Ea · ~Ba (68)

= 1
2 (
~Ea − θg2

8π2
~Ba)2 − 1

2 (1 +
θ2g4

(8π2)2 )(
~Ba)2 = 1

2 (
~Ea′

)2 − 1
2 (
~Ba′

)2 (69)

Integrate both fields, we find,

q
′

e = qe −
θg2

8π2
gm (70)

If we integrate out E
′

field around a monopole B, we find

q
′

e = 0, gm =
4π

g
, qe =

θg

2π
(71)

Which means the monopole behaves like that it has a fractional electric charge,
On the other hand, we already know that by binding to fermions, the monopole could get an integer electric

charge, thus every electric and magnetic charge become periodic in θ. Because the monopole behaves like it has a
fractional charge, the Dirac quantization condition between electric and magnetic charge should be more democratic

q1eg
2
m − q2eg

1
m = 2πn12, n12 ∈ Z (72)

which means a quantum theory can have two dyons(dyons are particles that carry both electric and magnetic charge)
with charge (g1, e1) and (g2, e2) only if above topological quantization conditions are satisfied.

Now consider a monopole of charges (2πe , q), if CP is invariant, we have another monopole with charges (2πe ,−q),
since electric charger is odd under CP but the magnetic charge is even. The requirement of the generalized Dirac
quantization condition shown above require that

q = n12e or q = (n+
1

2
)e (73)

means the monopole must have integer or half-integer charges. Moreover, if monopole of integer charge exist, then
monopoles of half-integer charge do not and vice-versa. The observable weakly violated CP in nature implies that if
monopole exist, they will have charges that are almost but not quite integers and the deviation from integral charge
would be proportional to the strength of CP violation.

The interesting way to introduce the CP violation into the theory is to consider a non-zero value of the θ vacuum
angle by adding to the Lagrangian an additional CP violating interaction term to the (3+1) SU(2) non-Abelian model
which provide a so called ’t Hooft Polyakov magnetic monopole after spontaneously symmetry breaking with mass
mV = 4π

e2 mV , as shown in the Eq.(32),

LCP =
θe2

32π2
Fµν F̃

µν (74)

when θ 6= 0, CP is not conserved.



It turns out that(See Witten’s 1979 paper ”Dyons of charge eθ
2π”) the charge of the monopole becomes

q = ne− θe

2π
≡ (n+ δ)e δ = − θ

2π
(75)

means the magnetic monopoles electric charge depend on θ and are not integral if θ is non-zero, in particular, if θ is
not zero, in other word, CP is violated, there does not exist an electrically neutral magnetic monopole(q can never
be 0). Assuming that θ vacuum angle is the only source of the CP violation(note: CP violation can also origins from
other source in particle physics), the monopole charge q = (n+ δ)e is exact without higher order corrections.

Note: the θ vacuum dependence of the monopole charge here do not refer to instantons[3]. If monopole is absent,

no classically allowed motions with non-zero FF̃ term appear in the theory, the θ vacuum dependence appear as

a tunneling effect of order e−
4π
e2 contributed from instantons. However, in the presence of monopole, there are

classically allowed motions for dyons, with non-zero FF̃ term appear. This is clear in our electric-magnetic duality
analysis before. Consequently, the θ dependence in the monopole sector has nothing to do with instantons and is of

leading order rather than order of e−
4π
e2

F. Topological mass generation mechanism

The mass generation mechanism can be understood in terms of topological interactions, without requiring the
detail knowledge of the underlying dynamics. It is well known that in 1+1 dimensional QED, the photon will
become massive due to topological interactions.

1. 1+1 Dimensional Schwinger’s model

The model is a Abelian QED, with the Lagrangian

L = −1

4
FµνFµν + iψ̄γµ(∂µ + ieAµ)ψ (76)

the QED interaction is

Lint = −eAµψ̄γ
µψ ≡ −eAµJ

µ (77)

We already know the anomalous divergent is

∂µJ
µ5 = − e

2π
ǫµnuFµν =

e

π
F (78)

where F is a pseudo scalar. where the dual curvature is just the pseudo scalar.

F̃µν =
1

2
ǫµνFµν = −F (79)

The axial vector current J5
µ is dual to the vector current J5

µ = ǫµνJ
ν , in the 2D Γ matrix, the duality is the identity

γµγ
5 = ǫµνγ

ν (80)

From the equation of motion,

∂µF
µν = eJν (81)

we get

ǫανǫ
µν∂µF = eǫανJ

ν (82)

or −gνµ∂νF = eJ5
µ, namely ∂µF = −eJ5

α, thus we find

∂2F +
e2

π
F = 0 (83)

(Note: the explicit step by step derivation above is not necessary but helpful in dealing with 4D theory.)



The Chern-Simons current is

Kµ
2 ≡ ǫµνAν (84)

and the Equation of the motion of the Chern current is

∂µK
µ
2 = ǫµν∂µAν =

1

2
ǫµνFµν = F̃µν = −F. (85)

The Lagrangian become

L = −1

4
FµνFµν − eJµAµ =

1

2
F 2 − eAµǫ

µνJ5
ν =

1

2
(F̃µν)

2 + eKµ
2 J

5
µ (86)

2. 3+1 Dimensional non-Abelian model with topological mass generation

The Chern-Simons currents is

Kµ
4 ≡ 2ǫµνρσ(Aa

ν∂ρA
a
σ +

1

3
fabcAa

νA
b
ρA

c
σ) (87)

and the dual field is

F̃µνa =
1

2
ǫµνρσF a

ρσ (88)

the equation of motion is

∂µK
µ
4 = F̃µνaF a

µν (89)

Variation of the Chern-Simons current gives

δKµ
4 = 2ǫαµνω[(∂νA

a
ω)δA

a
µ + fabcδAa

µA
b
νA

c
ω]

= 2ǫαµνω[F a
νωδA

a
µ − ∂ν [(δA

a
ω)A

a
µ]] = 4FαµaδAa

µ + 2ǫαωνµ∂ν [(δA
a
ω)A

a
µ] (90)

The duality identity corresponds to that of 2D is

ǫµνωαγαγ
5 = gµνγω − gµωγν + gνωγµ − γµγνγω (91)

The axial vector current is anomalous as expected,

∂µJ5
µ = −κF̃µνaF a

µν (92)

where κ is a positive numerical coupling constant.
By taking the divergence of above equation, we get

J5
µ = − κ

∂2
∂µF̃

µνaF a
µν (93)

The Lagrangian density becomes

L =
1

2
(F̃µνaF a

µν)
2 + Λ2Kµ

4 J
5
µ (94)

where Λ2 carries a mass-squared dimension, since (F̃µνaF a
µν)

2 is dimension eight operator and Kµ
4 J

5
µ is a dimension

six one.
Variation of the Lagrangian with respect to Aa

µ gives the equation of motion(EOM),

δL
δAaα

= F̃µνaF a
µν

∂[F̃µνaFaµν ]

∂Aaα
+ Λ2 ∂Kµ

4

∂Aaα
J5
µ

= 4[F̃µνaF a
µν ]∂βF̃

βαa + 4Λ2J5α + 2∂ν [Λ
2J5

µ]ǫ
ανωµAa

ω

= −4∂β[F̃
µνaF a

µν ]F̃
βαa + 4Λ2J5α + 2∂ν [Λ

2J5
µ]ǫ

ανωµAa
ω = 0 (95)



If Λ2 is a physical energy scale like QCD by dimensional transmutation, and thus a constants, the second part of the
EOM can be simplified by exchange index α and ω as

Λ2(∂νJ
5
µ − ∂µJ

5
ν )ǫ

ανωµAa
ω (96)

thus is zero.
By using the identity F̃µνFµρ = 1

4δ
ν
ρ F̃

µνaF a
µν (by assuming F̃µνFµρ = Aδνρ [F̃

µνaF a
µν ], by taking trace of both sides

to get A = 1
4 ), we get the EOM

− ∂α[F̃
µνaF a

µν ] + Λ2J5
α = 0 (97)

Take the divergence on both sides, we arrive

− ∂2[F̃µνaF a
µν ] + Λ2∂αJ5

α = 0 (98)

Finally, we obtain the EOM in the formalism with the anomalous divergence of J5
α,

∂2[F̃µνaF a
µν ] + κΛ2[F̃µνaF a

µν ] = 0 (99)

which means F̃µνaF a
µν propagates as a free massive field. In the another viewpoint, the pseudo-scalar, or the con-

densation of gauge field < FµνaF a
µν > has obtains a mass

m2 = κΛ2 (100)

At the moment, we can make some comments here: On one hand, the anomaly from the axial current provides as a
source of mass generation mechanism(i.e., if there is no anomaly κ = 0, then m = 0), for the (3 + 1) space-time, the
coupling κ is automatically generated from the triangle loop diagram of fermions. On the other hand, the mass is
proportional to the physical dynamical scale Λ. The explanation of mass generation mechanism might attributes to
where and how the dynamical energy scale Λ arise.

II. HOLOMORPHIC GAUGE COUPLINGS AND NSVZ β FUNCTIONS

In the following, we extend our discussion in ordinary space to the super space. Supersymmetry is asymmetry
which relates bosons and fermions. Because on one hand, fermion loops contribute minus sign comparing with
gauge bosons in Coleman Weinberg potential, on the other hand, bosons always appear with fermion partners, thus
ultraviolet divergence are canceled between bosonic and fermionic loops. Thus the larger hierachy and fine-tuning
problems of QFT are solved under the frame of low scale SUSY. The important question left is how SUSY is broken.
SUSY gauge theories share features like confinement and chiral symmetry breaking as in QCD and served as one of
the ideal laboratories for constructing strongly coupled gauge theories those could give important clues in dealing
with strongly coupled non-SUSY QCD.

We begins from N=1 SUSY Lagrangian with SU(N) gauge theory with Nf flavors.

L =

∫

d4θΦ†e−2V Φ +
1

8π
Im(τTr

∫

d2θWαWα) + (

∫

d2θW (Φ) + h.c.) (101)

with the scalar chiral superfield Φ, vector superfield V , vector field strength chiral superfield Wα and holomorphic
superpotential term W (Φ), where

Φ(x, θ, θ̄) = φ(x) +
√
2θψ(x) + θ2F (x) + iθσµθ̄∂µφ(x) − i√

2
θ2∂µψ(x)σ

µθ̄ − 1
4θ

2θ̄2�φ(x) (102)

V = −θσµθ̄Aµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x) (103)

in the Wess-Zumion gauge.

Wα = (−iλaα + θαD
a − (σµσ̄νθ)αF

a
µν + θ2(σµDµλ̄

a)α)T
a (104)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν is the ordinary non-Abelian gauge field strength, and gauge covariant

kinematic term for gaugino Dµλ̄
a = ∂µλ̄

a + fabcAb
µλ̄

c. Finally, the holomorphic superpotential terms(after Tailor
expansion in superspace)

W (Φi) =W (φi) +
∂W

∂φi

√
2θψi + θ2(

∂W

∂φi
Fi −

1

2

∂2W

∂φi∂φj
ψiψj) (105)



(Note: R[ψ] = R[φ]− 1, R[F ] = R[φ]− 2, R[θ] = 1,R[W ] = 2, R[λ] = 1)
After some algebra, the total Lagrangian of N=1 SUSY can be expressed as

L = (Dµϕ)
†Dµϕ− iψ̄σ̄µDµψ −Daϕ†T aϕ− i

√
2ϕ†T aλaψ + i

√
2ψ̄T aλaϕ

+F †
i Fi − 1

4F
a
µνF

µνa + g2

8π2
iθ
4 F

a
µν F̃

µνa − i
g2λ

aσµDµλ̄
a + 1

2g2D
aDa

+∂W
∂ϕi

Fi +
∂W̄

∂ϕ†
i

F †
i − 1

2
∂2W

∂ϕi∂ϕj
ψiψj − 1

2
∂2W̄

∂ϕ†
i∂ϕ

dag
j

ψ̄iψ̄j (106)

It is straightforward to prove that the Lagrangian is invariant under the SUSY transformation, and in addition is
closed,

δAa
µ = − 1√

2
(ǫ†σ̄µλa + λa†σ̄µǫ)

δλα = − i
2
√
2
(σµσ̄νǫ)αFµν + 1√

2
ǫαD

δλ·α = i
2
√
2
(ǫ†σ̄νσµ)·αFµν + 1√

2
ǫ†αD

δD = − 1√
2
[ǫ†σ̄µDµλ−Dµλ

†σ̄µǫ] (107)

with F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , and Dµλ

a = ∂µλ
a − gfabcAb

µλ
c.

Eliminate the auxiliary F and D filed by using EOM

F †
i = −∂W

∂ϕi
Da = g2ϕ†T aϕ (108)

the total Lagrangian can be simplified as

L = (Dµϕ)
†Dµϕ− iψ̄σ̄µDµψ −Daϕ†T aϕ− i

√
2ϕ†T aλaψ + i

√
2ψ̄T aλaϕ

− 1
4F

a
µνF

µνa + g2

8π2
iθ
4 F

a
µν F̃

µνa − i
g2 λ

aσµDµλ̄
a − V − 1

2
∂2W

∂ϕi∂ϕj
ψiψj − 1

2
∂2W̄

∂ϕ†
i∂ϕ

dag
j

ψ̄iψ̄j (109)

where the scalar potential consists of F terms and D terms

V =
∑

i

F †
i Fi +

1

2g2
DaDa =

∑

i

|∂W
∂ϕi

|2 + 1

2
g2(ϕ†T aϕ)2 (110)

For N=1 SUSY, we have an additional U(1)R global R symmetry(Hidden in non-SUSY theory). By requiring
chiral and anti-chiral superfields have zero R charge, scalar will have zero R charge, but Weyl fermions with a -1
hypercharge, and gaugino a +1 R charge. R symmetry is behaviors like a chiral symmetry, and thus it is anomalous

in the quantum theory, labeled by U(1)
′

R, combining which with the ordinary anomalous U(1)A symmetry, it is
possible to construct a new anomaly free U(1)R symmetry, with the R charge

R = R
′

+
Nf −N

Nf
A (111)

TABLE I: Electric theory

SU(N) SU(Nf ) SU(Nf ) U(1)B U(1)R
Φf

2 2 1 1 1− N
Nf

Φ̃f 2 1 2 -1 1− N
Nf

Φf Φ̃g 1 2 2 0 2(1- N
Nf

)

For the discussion at the moment, we focus on the terms refers to holomorphic gauge couplings

τ =
4πi

g2
+

θ

2π

. When the gauge couplings g becomes stronger, the non-perturbative contribution from the θ vacuum(multi instan-
tons) will contribute effect.



These comes from second term of Eq.(135), which relates to vector field strength chiral superfield Wα. After some
algebra, by and finally by using the identity

Tr[σµνσρσ] = −1

2
(ηµρηνσ − i

2
ǫµνρσ) (112)

(with Wess & Bagger ’s notation ǫ0123 = −1), and neglecting the gaugino term and D terms, we arrive at the pure
gauge interactions with instanton term before, namely

L = −1

4
F a
µνF

µνa +
g2

8π2

iθ

4
F a
µν F̃

µνa (113)

With the holomorphic gauge coupling τ running in the renormaliation group(RG), the one loop β function is

β(g) =
∂g

∂ logµ
= − b0

16π2
g3 (114)

with renormalization coefficient b0 = 3C2(Gc) −
∑

f C(rf ) determine by the representation of chiral superfields

rf ∈ Gc. Where C2(r)1 = (T aT a)r is quartic Casimir operator and C(r)δab = Trf (T
aT b) and adjoint representation

Gc, i.e., for SUSY QCD, we get

b0 = 3N −Nf (115)

(note: C(rf ) =
1
2 for r = 2 or 2̄, and N for r ∈ Gc, C2(N) = N2−1

2N , C2(Gc) = N for SU(N))
The solution for the running coupling is

1

g2(µ)
= − b0

8π
log

Λ

µ
(116)

where Λ > 0 is the intrinsic non-perturbative energy scale of the non-Abelian gauge theory that enters trhrough
dimensional transmutation.

The holomorphic gauge couplings τ at the one loop level, can be rewritten as

τ1−loop =
1

2πi
log[(

Λ

µ
)b0eiθ] (117)

ForNf ≤ 3N , given the gauge couplingsg at some energy scale µ, it is obviously that the gauge couplings becomes
larger as the energy scale becomes smaller. Thus it is nature to define the non-Perturbative scale of the theory as

Λ = µe
2πiτ−iθ

b0 = µe
− 8π2

g2b0 (118)

with µ a large energy scale where the gauge couplings constant g is given, i.e., for SUSY QCD, the non-perturbative
scale is determined by above equation if Nf < 3N .

On the other hand, we know the two loop running of the gauge coupling for N = 1 SUSY QCD with Nf flavors is
known,

β(g)2 = − 1

16π2
(3N −Nf )g

3 +
1

64π4
(4NNf − 6N2 − 2Nf

N
)g5 (119)

it is expected the one loop contribution(the first term) is dominate at high energy since g ≪ 1. However, when the
theory goes flow to low energy, the gauge couplings become stronger, and at some critical pointg(µ), the two loop
term might become comparable to the one loop term and the β function gives zero. The conditions are equivalent to

3N

2
< Nf < 3N (120)

the first in-equivalent identity make the one loop term negative, while the second in-equivalent identity make the
two loop term positive. This analysis suggests a conformal fixed point.

The interesting thing is not the running of gauge couplings, but the running of the holomorphic gauge couplingsτ .
With the properties that τ(µ) = 4πi

g (µ) + θ
2π is holomorphic and periodic in the Yang-Mills phase θ, it is straight-

forward to prove the so called nonrenormalization theorem that the holomorphic gauge coupling is exhausted at
one-loop, therefore not renormalized by higher loops in perturbation theory and the one loop logarithmic running is
exact. On the other hand, the couplings in the tree level superpotential are not renormalized at any order in perturba-
tion theory, since the more general holomorphic dynamical effective superpotential in the perturbative limit(g → 0)
is the same as the Wess-Zumino cubic tree level superpotential for a renormalizable theories.

Weff =Wtree =
1

2
mΦ2 +

1

3
λΦ3 (121)



Note:The tree level superpotential has mass dimension 3 for renormalizable theories, since
∫

d2θW contains product
of component fields of mass dimension 4 when W has cubic interaction in terms of scalar chiral superfields.

In the following, consider two left handed chiral super fields (Φf , Φ̃g) belong to the fundamental(2) and anti-

fundamental representation (2̄) of SU(N), separately. For the right handed ones, just denote (Φ̄f , ¯̃Φg)

L =

∫

d4θ(Φ†
fe

−2V Φf + Φ̃ge
−2V Φ̃g†) +

1

8π
Im(τTr

∫

d2θWαWα) + (

∫

d2θW (Φ, Φ̄) + h.c.) (122)

Once the holomorphic gauge couplings is RG running from cutoff µ to µ
′

, namely

τ(µ
′

) = τ(µ) +
ib0
2π

log
µ

µ′ (123)

with running coefficient b0 = 3C2(Gc)−
∑

f C(rΦ,Φ̄).

the chiral superfields (Φ, Φ̄) are renormalized, and contribute in the nonholomorphic Kahler kinetic term

L =

∫

d4θZΦ,Φ̄(µ, µ
′

)(Φ†
f e

−2V Φf + Φ̃ge
−2V Φ̃g†) +

1

8π
Im(τ(µ

′

)Tr

∫

d2θWαWα) (124)

Because the wavefunction renormalization coming from the Kahler kinetic terms in the Lagrangian, the running
of the physical gauge couplings g is not holomorphic.

Canonically normalize the chiral superfield just behaviors like the chiral gauge transformation of U(1)A symmetry
for matter, contributes to measure of chiral superfields in the path integral DΦDΦ†DΦ̄DΦ̄† with an additional phase

e
∫
d4x 1

16π2 Tr[iC(rΦ,Φ̃)i logZΦ,Φ̄τTr
∫
d2θWaWa] (125)

From which, we get the physical running of the gauge couplings coefficients, after applying differential ∂
∂ logµ , we

arrive the physical Novikow-Shifman-Vainshtein-Zakarov(NSVZ) one loop beta functions, which is the exact result
for all loops.

β(g) =
∂g

∂ logµ
=

3C2(Gc)−
∑

f C(rΦ,Φ̄)(1 − γΦ,Φ̄)

1− C2(Gc)
g2

8π2

g3

16π2
(126)

where

γΦ,Φ̄ =
∂ logZΦ,Φ̄

∂ logµ
(127)

is the anomalous mass dimension of chiral superfields origins from wave function renormalization of matter be-

long the representation rf (the mass dimension of the field operator rescale d[Φ] → d[
√
ZΦ] = 1+ γ

2 ), and the non-zero
gauge couplings term in the denominator of above equation comes from the wavefunction renormalization of gaug-
ino from kinetical basis to canoical basis( 1

g2F
2 → F 2).

Take SU(N) SQCD as an example, we have

β(g) =
3N −Nf (1− γ)

1−N g2

8π2

g3

16π2
(128)

in terms of ’t Hooft coupling gt = g
√
N , it becomes

β(gt) =
3N −Nf (1− γ)

1− g2
t

8π2

g2t
8π2N

(129)

From which, we get the critical values of anomalous dimension

γc = 1− 3N

Nf
(130)

where the β function always vanish for γc. As Nf = 3N , γc = 0 and as Nf decrease, γc become negative. Thus we
find the mass dimension of the rescaled scalar chiral superfield is given by

d[
√
ZΨ] = 1 +

γc
2

=
3

2
(1− N

Nf
) (131)



the mass dimension of the scalar chiral superfield is not less than one, when Nf ≥ 3N . The meson field is condensed
in the non-perturbative low energy region, and its mass dimension is

d[Mf
g ] = 3(1− N

Nf
) =

3

2
R[Mf

g ] (132)

which is a special example of a general theorem: At conformal fixed point, the mass dimension of scalar field is not
less than 1 and the mass dimension of gauge invariant operator d[O] is related to the R charge of itselfR[O] by

d[O] ≥ 3

2
R[O] (133)

which is saturated for chiral operators.
(I) 32N < Nf < 3N
It is straight to get the ranges of the mass dimension of meson field,

1 < d[Mf
g ] < 2 for

3

2
N < Nf < 3N (134)

thus, the meson behave like scalar for Nf ∼ 3
2N , since d[Mf

g ] ∼ 1. To be brief, with 3
2N < Nf < 3N the physical

gauge coupling is RG flowing to a non-trivial fixed point in the IR, thus the N=1 SUSY gauge theory with Nf flavors
in the range is a IR free electric gauge theory.

(II)Nf = 0
In the following, lets consider a pure SU(N) super Yang-Mills with all chiral superfield absent(Nf = 0).

L =
1

8π
Im(τTr

∫

d2θWαWα) (135)

Written in component fields, we have

L = −1

4
F a
µνF

µνa +
g2

8π2

iθ

4
F a
µν F̃

µνa − i

g
λaσµDµλ̄

a +
1

2g2
DaDa (136)

In this situation, we can not combine U(1)
′

R and U(1)A together to construct anomaly free U(1)R. The only left

U(1)
′

R symmetry is nothing but Z2N , just a discrete subgroup of U(1)R, which keep the pure gauge theory gauge
invariant(The vacuum phase θ rotate integer times of 2π).

If gaugino condensation happens dynamically in the sense that the bilinear Tr(λαλα) in the superpotential obtain a
non-zero vacuum expectation value, namely < Tr(λαλα) > 6= 0, which can be reached by integrating out the glueball
superfield S = − 1

32π2 Tr[WαWα] in the Veneziano-Yankielowicz superpotential

Weff = NS −NS log
S

Λ3
(137)

This results in the non-perturbative dynamical super-potential

W ∼< Trλαλα >= NΛ3ei
2πk
N ,where k = 1, . . . , N (138)

where Λ is the dynamical energy scales of the pure gauge theory with N phases of the vacuum appear(In analog
to the goldstone degree of freedom due to spontaneously symmetry breaking of continuous symmetry)since the
quantum discrete Z2N R symmetry is broken down to Z2 symmetry due to gaugino condensation.

(III)1 ≤ Nf ≤ N − 1

When flavors are added, 1 ≤ Nf ≤ N−1, the gauge invariant scalar(gauge singlet) chiral super-fieldMf
g ≡ Φf ˜Phig

made out of chiral superfield transforms as a bi-fundamental representation (2, 2̄) of SU(N)f × SU(Nf ). The
non-perturbative dynamical superpotential are constructed with non-perturbative energy scale Λ, and holographic
gauge invariant functions(operators made out of the matter super-fields) of detM and holomorphic gauge coupling
τ , which is just the Affleck-Dine-Seiberg(ADS) superpotential

W = (N −Nf )(
Λb0

detM
)

1
N−Nf (139)

for SUSY QCD. When gauge singlet Mf
g (with N2

f components) obtain vacuum expectation value and detM 6= 0, the

gauge symmetry SU(N) is broken down to SU(N − Nf ), until Nf = N − 1, when the gauge symmetry is totally
broken.



TABLE II: Nf = N Electric theory for M = Λ2, Bf = B̃g = 0, chiral symmetry breaking to custodial symmetry

SU(N) SU(Nf ) U(1)B U(1)R
Φf

2 2 1 0

Φ̃f 2̄ 2̄ -1 0
Mf

g 1 N2
f − 1 0 0

Bf 1 1 N 0

B̃g 1 1 −N 0

TABLE III: Nf = N Electric theory for M = 0, Bf = −B̃g = ΛN , U(1)B is broken

SU(N) SU(Nf ) SU(Nf ) U(1)R
Φf

2 2 1 0

Φ̃f 2̄ 1 2̄ 0
Mf

g 1 2 2̄ 0
Bf 1 1 1 0

B̃g 1 1 1 0

(IV) Nf = N
The interesting thing happens when Nf = N , not only that the gauge singlet Mg

f becomes mesons, but also two

additional extra gauge invariant gauge singlet, namely the baryons and anti-baryons.

B = detΦ B̃ = det Φ̃ (140)

The total degree of freedom of gauge invariant complex number become N2
f + 2 by taking account meson, baryon

and anti-baryon together. On the other hand, the gauge symmetry SU(N) is totally broken, so that the only 2NNf −
(N2−1) = N2+1 massless(unbroken) degree of freedom left(2Nf from scalar chiral superfields, N from color). Thus
there is one extra massless(unbroken) degree of freedom, which is a constraint relating the meson, baryon and anti
baryon, turning out to be

detM −BB̃ = Λ2N (141)

, and called quantum moduli space. This configuration of quantum vacuum state is deformed different from the
classical moduli space(Λ = 0)

detM −BB̃ = 0 (142)

. At the point, it is worthy noticing that the quantum moduli space does not have solutions with all moduli vanishing,

thus it is smooth everywhere, therefore we need at least detT 6= 0 or B, B̃ 6= 0, which means there is no point on the
moduli space which preserves all the global SU(N)f ×SU(N)f ×U(1)B×U(1)R symmetry. While the classic moduli

space contains a singular point where all gauge invariant moduli detM ,B and B̃ vanish, therefore at the singularity,
we have some zero expectation values of chiral superfields, since detM = 0, associating with massless vector fields.
To be brief, the classical singularity are usually associated some fields becoming massless. Furthermore, for SUSY

QCD, b0 = 3N − Nf = 2N and Λ2N ∼ e
− 8π2

g2 , therefore the quantum deforming comes from a single instanton. In
summary, the classical singularity get smoothed out by non-perturbative quantum effects in SUSY gauge theory.

We can make a compariment with SUSY QCD and QCD at the quantum level at the moments. For examples, when

detT = Λ2N and B = B̃ = 0, at the quantum level, the gauge symmetry SU(N)f × SU(N)f × U(1)B × U(1)R of
SUSY QCD is broken to SU(N)D × U(1)B × U(1)R, where D stands for diagonal, in analog to the chiral symmetry
breaking happens in QCD. The difference here is that we could exactly calculate the non-perturbative dynamics and
the vacuum structure at SUSY QCD.

One the other hand, we know that the one loop running of β function for N=1 SUSY QCD with Nf flavors has the
coefficient ∼ −b0 = −(3N −Nf). Thus at one loop level, the gauge coupling is relevant(at low energy) for Nf < 3N ,
irrelevant(in other words, UV free) for Nf > 3N and marginal(β function is vanishing and gauge coupling is no long
running) for Nf = 3N . The above discussion is based at the level of perturbative theory, where the couplings at tree
level is not renormalized. However, non-perturvative effects could modify both the gauge couplings and couplings
of operators at tree level which could turn the corresponding operator into relevant one.



III. SEIBERG DUALITY

With above intuitive observation for N=1 SU(N) super Yang-Mills with Nf flavor, Seiberg propose following

conjectures[4]: (a)The N=1 SU(N) SUSY electric gauge theory with Nf flavor(Φ and Φ̃) with 3
2N < Nf < 3N flows

to a non-trivial fixed point in the IR. (b)For above electric gauge theory, there is dual magnetic N=1 SU(N−Nf) gauge

theory with Nf flavors(ψ and φ̃) and gauge invariant scalar chiral superfield M̃g
f with tree level supperpotential

Wtree = yφfM̃g
f φ̃g (143)

The number of the flavors (Nf , i.e., in analog to the number quarks in QCD) are physical and furthermore are the
same for the electric theory and its magnetic electric theory, thus they both have the same global gauge symmetry,
namely SU(Nf)×SU(Nf)×U(1)B ×U(1)R. While the gauge symmetry could be different, since gauge symmetries
are symmetries which relate different redundant degree of freedom and thus not a dynamical symmetry. The physi-
cal variables involved in physical observables are gauge invariant. The dual theory means the electric and magnetic
theory are two sides of one coin, they are going to be description of the same theory.

For the dual magnetic gauge theory, define N̄ = Nf −N , we have

3N̄ > Nf >
3

2
N̄ for

3

2
N < Nf < 3N (144)

Thus according to the first conjecture of Seiberg, the dual pure magnetic theory would also flow to a conformal fixed
point. For a given arbitrary number of flavors, the electric and magnetic gauge theories have different ranks, since
in general N 6= N̄ , except for Nf = 2N , thus basicly speaking, the electric and magnetic gauge theories go flow to
different conformal fixed point. In order to have the same conformal fixed point, flow to which for both electric and
magnetic theory, the dual of the magnetic theory(which is a electric theory)must have a rather relevant tree level
superpotential to push the fixed point together.

The R
′

charges of the chiral super fields Φ, Φ̃ are zero, thus the anomaly free R charge are

R[Φ] = R[Φ̃] = 1− N

Nf
(145)

according to Eq.(111).

TABLE IV: Dual magnetic theory

SU(Nf −N) SU(Nf ) SU(Nf ) U(1)B U(1)R
φf

2 2 1 N
Nf−N

N
Nf

φ̃f 2 1 2 − N
Nf−N

N
Nf

φf φ̃g 1 2 2 0 2 N
Nf

Here in the dual theory with a gauge symmetry SU(N̄), we have the anomaly free R charge

R[φ] = R[φ̃] =
N

Nf
(146)

thus R[φf φ̃g] = 2 N
Nf

, in addition d[φf φ̃g] =
3
2R[φ

f φ̃g ] = 3 N
Nf

, since φf φ̃g is a gauge invariant chiral operator and we

have

d[φf ] = d[φ̃g] =
3N

2Nf
(147)

. Note, by observing Eq.(145) and Eq.(147), it is clear that the baryon charge(being ± N
N−Nf

) of ψf and φ̃g with

N̄ = N −Nf color in dual magnetic theory is normalized with respect to the charge(being ±1 ) for Φf and Φ̃g with
N color.

Therefor the mass dimension of the operator in the tree leve superpotential of the dual magnetic theory in Eq.(143),

is d[φfM̃g
f φ̃g] = 1 + 3 N

Nf
, and

3 > d[φfM̃g
f φ̃g] > 2 for

3

2
N < Nf < 3N (148)



thus the tree level superpotential derives the magnetic theory to the same conformal fixed point as the electric gauge
theory. The tree level couplings has a mass diemension

d[y] = 3− d[φfM̃g
f φ̃g] = 2− 3

N

Nf
(149)

Thus we get the mass dimension of magnetic scalar M̃g
f ,

2 > d[M̃g
f ] > 1 for

3

2
N < Nf < 3N (150)

Observering Eq.(134) and Eq.(150), the Seiberg duality maps the meson field Mf
g (the expectation values of Φf Ψ̃g)

in the UV to the magnetic scalar M̃g
f in the IR, but d[Mg

f ] = 2 in the UV while d[M̃g
f ] = 1. Therefore, the meson and

magnetic scalar must be rescaled by a scale µ with mass dimension,

Mg
f = µM̃g

f (151)

The tree level superpotential in the magnetic theory becomes

Wtree =
y

µ
φfMg

f φ̃g (152)

Next, let’s think about how to go back to the electric theory. Consider the dual of the magnetic theory, the dual of

the magnetic quark (φφ̃) form a dual ”meson”, ˜̃Mg
f with dimension 2, then the tree level superpotential in the dual

to the magnetic theory is

Wtree =
y

µ̃
Φf ˜̃Mg

f Φ̃g +
y

µ
Mg

f
˜̃Mg
f (153)

Once the meson get expectation value and give mass to dual ”meson” ˜̃Mg
f , the dual ”meson” can be integrate out

and give

Mg
f =

µ̃

−µΦ
f Φ̃g (154)

thus the dual ”meson” and the meson are the same thing if and only if µ̃ = −µ.
Now consider the non-perturbative energy scale denoted by Λe of the electric theory that of the dual magnetic

theory by Λm. The electric and magnetic variables are related by a scale with a unite mass dimension, the full
relation between electric and magnetic theory must be

Λ
3N−Nf
e Λ

3N̄−Nf
m = (−1)N̄µNf (155)

so that for the relation between magnetic and dual magnetic theory is

Λ
3N̄−Nf
m Λ

3N−Nf
e = (−1)N µ̃Nf (156)

and both above identities are the same relations considering that µ̃ = −µ.
For the electric and magnetic theory gauge couplings ge(µ) and gm(µ) at the cutoff µ, we have

Λ
3N−Nf
e = µ3N−Nf e

− 8π2

ge(µ)2 and Λ
3N̄−Nf
m = µ3N̄−Nf e

− 8π2

gm(µ)2 (157)

If the electric gauge theory is strongly coupled at some high energy µ, so that Λe < µ, then from the relation between
electric and magnetic theory, we find (−1)Nf−N( µ

Λm
)2Nf−3N < 1, or

| µ
Λm

| < 1 (158)

the magnetic gauge theory become weakly coupled at that scale(and weakly coupled at low energy). The Seiberg
duality means what was mysterious in the electric theory is simple in the magnetic theory, and vice versa.

In the last section, we have discuss the physics of SUSY QCD when the flavor number are in the ranges 0 ≥ Nf ≤ N
as well as 3

2N < Nf < 3N . In the following, we would discuss all of other possibility.
(V)Nf = N + 1



TABLE V: Nf = N + 1 Electric theory

SU(N) SU(Nf ) SU(Nf ) U(1)B U(1)R
Φf

2 2 1 1 1
Nf

Φ̃f 2 1 2 -1 1
Nf

Mf
g 1 2 2 0 2

Nf

Bf 1 2 1 N N
Nf

B̃g 1 1 2 −N N
Nf

Bf B̃
g 1 2 2 0 2N

Nf

detM 1 1 1 0 2
Λ2N−1 1 1 1 0 0

(a)massless case
If the flavorNf = N+1, we still have mesonMf

g = Φf Φ̃g with (N+1)2 degree of freedom, in additionNf = N+1

baryons Bf and Nf = N + 1 anti-baryons B̃g, with the definition

Bf = ǫff1...fNΦ
f1 . . .ΦfN B̃g = ǫgg1...gN Φ̃g1 . . . Φ̃gN (159)

with a total degree of freedomN2
f +2Nf = N2 +4N +3 for the theory. By imposing ’t Hooft anomaly so that on one

hand, the gauge symmetry SU(N) is anomaly free with flavor degree of freedom from SU(Nf )×SU(Nf)×U(1)B ×
U(1)R, and on the other hand the global symmetry SU(Nf)× SU(Nf)×U(1)B ×U(1)R is UV and IR anomaly with
color degree of freedom from SU(N). We can construct the unique gauge and flavor invariant and holomorphic
dynamical superpotential with R charge 2 and mass-dimension 3

W =
1

Λ2N−1
(BfMg

f B̃
g − detM) (160)

Minimize the superpotential with gauge invariant variables Mg
f , Bf and B̃g , we get constraints

detM(M−1)fg −Bf B̃g = 0, Mf
gBf = 0, Mf

g B̃
g = 0 (161)

with N2
f + 2Nf = N2 + 4N + 3 degree of freedom, which are exactly the number of degree of freedom of the gauge

invariant moduli inMf
g ,Bf and B̃g . Thus the gauge symmetry is unbroken and the (electric) theory is confined with

massless mesons and massless baryons, the confinement does not lead to chiral symmetry breaking. On the other
hand, it is clear that the non-perturbative energy scale does not appear in the constraint so that these configuration
of mouli are just classical one and they must have singularities which associated with massless gauge vectors, as
analyzed before. In other words, the quantum moduli space of the massless theory with Nf = N + 1 flavors is the
same as the classical theory and the global symmetry is preserved at the singularity.

(b) massive cases
For theory with massive mesons, we can obtain the constraints by integrating in one more flavor to the Nf = N

theory as shown in Eq.(141). The result is

detM(M−1)fg −Bf B̃g = mf
gΛ

2N−1 (162)

. Thus for the massive meson case, the quantum moduli space is different from the classical moduli space, since
the non-zero meson mass mf

g 6= 0. (Note: In the massless situation, the quantum moduli space and classical moduli
space is still different forNf = N cases, namely Eq.(141) is still kept for massless cases. This is the difference between
Nf = N and Nf = N + 1.)

For theory with massive baryons, due to non-zero Mg
f give the mass to the baryons thus the baryons can be

integrated out and the only gauge invariant operators left are mesons Mf
g with N2

f = (N + 1)2 degree of freedom,
namely

detM(M−1)fg = 0 (163)

with baryons are removed from the original constraints. The low energy theory with only T f
g has no superpotential,

if Mf
g ≫ Λ2, the descriptions based on the superpotentail160 is in-valid.

(VI)N + 2 ≤ Nf ≤ 3
2N The electric gauge theory with flavors in this range is complicated. However the Seiberg

duality does work here, if we define N̄ = Nf −N , we have

Nf ≥ 3N̄ for N + 2 ≤ Nf ≤ 3

2
N (164)



(VII) 3N
2 < N < 3N the magnetic theory is SU(N̄) and it is IR free when Nf ≥ N̄ , thus for the electric gauge

theory with flavors in the range N + 2 ≤ Nf ≤ 3
2N is a weakly coupled magnetic theory, and the electric theory in

this range is (IR) irrelevant. This can be observed that in the range, the operator φfM̃g
f φ̃

g in the superpotential has

the mass dimension d ≥ 3, so that the coupling y in front of the operator has a mass dimension d[y] ≤ 0. Therefore
the gauge couplings of the dual magnetic theory simply is RG flowing to zero in IR.

(VII)Nf ≥ 3N
For N=1 SUSY of SU(N) gauge theory with flavor Nf in this range, the critical anomalous dimension in Eq.(130) is

in the range

0 ≤ γc ≤ 1 for 3N ≤ Nf <∞ (165)

so that the mass dimension of the chiral field is

1 ≤ d[Φ] ≤ 3

2
for 3N ≤ Nf <∞ (166)

and that of the meson field is

2 ≤ d[Mf
g ] ≤ 3 for 3N ≤ Nf <∞ (167)

From NSVZ β function in Eq.(128), we always have β(g) > 0, thus the theory is IR free and the low energy theory
contains free quarks and gluons.

IV. SEIBERG-WITTEN THEORY

Our motivation here is to study strongly coupled gauge theory from the weakly coupled physics via duality in a
quantitative approach.

We begins from N=2 SUSY Lagrangian,

L =
1

8π
[τTr(2

∫

d4θΦ†e−2V Φ+

∫

d2θWαWα)] (168)

with scalar multiplet Φ = (ϕ, ψα) and the vector multiplet Wα = (λα, Aµ) as N=1 SUSY, in addition, both Φ and Wα

belong the same vector multiplet and also transform in the adjoint representation.
After some algebra, the Lagrangian is

L = Tr[ 1
g2Dµϕ

†Dµϕ− i
g2 ψ̄σ̄

µDµψ] +
i
g2

√
2{λ, ψ}ϕ† − i

g2

√
2{λ̄, ψ̄}ϕ†]

+Tr[− 1
4g2Fµν F̃

µν + θ
32π2Fµν F̃

µν − i
g2 λσ

µDµλ̄]− V (169)

where the potential including F terms and D terms is

V = −Tr[
1

g2
D[ϕ†, ϕ] +

1

g2
F †F +

1

2g2
DD] (170)

by integrating out the auxiliary fields, it can be simplified as

V =
1

2g2
Tr[ϕ†, ϕ]2 (171)

From which we get the classical moduli space by minimize the potential and given by

ϕ = ϕaT a (172)

where the index a runs only over the commutative part of the group space, thus are the generators of the Cartan
subalgebra. For N=2 SUSY SU(N) gauge theory, its rank is N − 1 and h runs from 1 to N − 1. The SU(N) gauge

symmetry is broken by the moduli shown above down to ΠN−1
i=1 U(1)i, i.e., for N=2 SU(2) SUSY, its rank is one and

there is only one carton generator, namely T 3 = σ3. Although the gauge symmetry is broken from SU(2) down to
U(1), the N=2 SUSY symmetry remains unbroken.

The classical moduli space(manifold of the gauge inequivalent vacuum) can be parameterized as a complex pa-
rameter,

u =
1

2
Tr[ϕ2] =

1

2
a2 (173)



0−Gaugino condensation−Confinement− V(r)~ σ R
1

N−Quantum moduli space
(N−1)−− Higgs Phase  V(r)~const −no potential

(N+1)−−− s confinement −but V(r)=0
N+2

3N/2

3N−−−IR free electric theoryV(r)~1/[R ln(Λ R)]4D SCFT Conformal Window

[1−(N−1)]−ADS superpotential−Higgs− confining mixing

[(N+2)−(3N/2)] IR free magnetic theoryV(r)~ln(Λ R)/R

[(3N/2)−3N]−−−IR fixed point−V(r)~1/R−non−Abelian coulomb phase

g
m

g
e

FIG. 1: Phase diagrams for N=1 SU(N) SUSY QCD classified by Seiberg duality.
(I-1) 3N

2
< N < 3N , non-Abelian Coulomb phase, the gauge coupling does not run, with a Coulomb potential V (r) ∼ 1

R
, an

interacting conformal theory, no particle description, only γ is physical, conformal window.
(I-2)N ∼ 3N , a perturbative infrared fixed point.
(II)Nf = 0, gaugino condensation, Confining phase(means its infrared physics can be described exactly in terms of gauge invari-
ant composites and its interactions), linear potential V (r) ∼ σR, σ is the string tension(constant mass per unite length.)
(III-1)1 ≤ Nf ≤ N − 2, gaugino condensation generates ADS superpotential
(III-2)Nf = N − 1,instantons can generates ADS superpotential, Higgs phase, the gauge bosons are massive so that there is no
long range forces. (IV)Nf = N , quantum moduli space is deformed to be continous, confining in the sense that all of the massless
degrees of freedom(meson and baron) are color singlets particles.
(V)Nf = N + 1, confining phase without chiral symmetry breaking and with a non-vanishing confining superpotential(”s con-
finement”), since quantum moduli space is singular as the classic moduli space, all particles(including meson and baryon) are
color singlet. Gauge symmetry is unbroken, gluons and gluinos are massless, global symmetry is preserved,
(VI)N + 2 ≤ Nf ≤ 3

2
N , free dual magnetic gauge theory, lose asymptotic freedom. Static magnetic monopole grows logarithmi-

cally due to the renormalization of massless electrons loops. V (r) ∼ logRΛ
R

. The electric theory is weakly coupled near Nf = 3N

and becomes strong when Nf decrease, while the dual magnetic theory is weakly coupled near Nf = 3
2
N and becomes stronger

when Nf increase.
(VII)Nf ≥ 3N , free electric gauge theory, the couplings grows in the IR, lose asymptotic freedom, a weakly coupled low-energy
effective theory. Static electrons are renormalized by massless monopole loops. V (r) ∼ 1

R logRΛ
.

which are gauge invariant under the Weyl reflection ϕ → −ϕ. Note that the variable u can take any complex
numbers thus the classical moduli space is a complex plane, together with a point at infinity that compactifying the
complex plane, we get a Riemann sphere S2. The classical moduli space has singularity when u = 0, means ϕ = 0
and the gauge bosons are all massless.

The most general renormalizable Lagrangian can be written in term of N=2 chiral super-filed Ψ in superspace,
with superspace coordinates as (x, θ1, θ̄1, θ2, θ̄2).

L =
1

4π
(τTr

∫

d2θ1d
2θ2

1

2
Ψ2) (174)

Ψ = Φ(y2, θ1) +
√
2θα2Wα(y2, θ1) + θ̃22(Φ

†(y2 − iθ1σθ̄1, θ1, θ̄1)e
2gV (y2−iθ1σθ̄1,θ1,θ̄1))θ̄1,θ̄1

yµ2 = xµ + iθ1σ
µθ̄1 + iθ2σ

µθ̄2 (175)

satisfying D̄1
α̇Ψ = 0 and D̄2

α̇Ψ = 0, with respect to θ1 and θ2, respectively.
The holomorphic gauge coupling

τ =
4πi

g2
+

θ

2π
(176)



The general Lagrangian in effective low energy(non-linear σ model) N=2 SUSY can be written with a general
function of the chiral superfield of Ψ, called prepotential F(Ψ),

L =
1

4π
(τTr

∫

d2θ1d
2θ2F(Ψ)) (177)

(note: if we choose F(ϕ) = 1
2Tr[ϕ2]), we reproduce the standard super Yang-Mills in Eq.(169).

after expanding, it is

L =
1

4π
(

∫

d4θ(Φ†e2gV )aFa(Ψ) +
1

2

∫

d2θFab(Ψ)WaαWb
α) (178)

where

h ≡ Fa(Φ) =
∂F

∂Φa
, τ ≡ ∂h

∂Φb
= Fab(Φ) =

∂2F

∂Φa∂Φb
(179)

which gives the Kahler potential(real-valued function of both Φ and its conjugate Φ†)

K = Im(Φ†aF(Φ)) (180)

and

gab = Im(
∂2F

∂Φa∂Φb
) (181)

from the Kahler metric

ds2 =
∂2K

∂Φ†a∂Φb
dΦadΦb = Tr[τ ]dΦdΦ (182)

The terms that we are interested is the second term in the Eq.(178), expressed as

L =
1

16π
Im(i

∂2F(ϕ)

∂ϕ2
Fµν F̃

µν) =
1

16π
Tr[τ(FµνF

µν + iF̃µν F̃
µν)] =

1

32π
Tr[τ(Fµν + iF̃µν)

2] (183)

Thus for N=2 SUSY, the SUSY algebra is invariant under U(2)R = SU(2)R × U(1)R symmetry, which U(1)R will
contribute a anomaly like the chiral anomaly from U(1)A. The Lagrangian is constrained and expressed in terms of
a holomorphic function-prepotential F(Φ). Both the gauge coupling and the Kahler potential are determined by the
prepotential. Because the holomorphic gauge couplings is renormalized only at one loop and the one loop β function
is exact, thus the exact prepotential in the perturbative region can be determined by using only one loop calculation.

Take N=2 SU(2) SUSY as an example, it turns out that the prepotential contains both perturbative and non-
perturbative contributions expressing as follows

F =
i

2π
ϕ2 log

ϕ2

Λ2
+

∞
∑

i=1

ck(
Λ

ϕ
)4iϕ2 (184)

where ci are constant coefficients.
The perturbative part is the first part of the above equation, which is determined by requiring the shift of prepo-

tential contributes exactly the chiral anomaly from the U(1)R symmetry.

δL = − α

4π2
Fµν F̃

µν (185)

According to non-renormalization theorems for N=2 SUSY, one loop β functions is exact so that there is no
higher(two loops or more) loop corrections to the F in the full perturbative result, the exact perturbative prepo-
tential is of one loop logarithmic form

Fpert =
i

2π
ϕ2 log

ϕ2

Λ2
(186)

where Λ is the non-perturbative dynamical scale of SU(2). This perturbative prepotential would correctly describe
the dynamics of the theory in the local ultraviolet large ϕ region, however it can not give a good global description.



The second part of the equation comes from multi-instanton, which is non-perturbative, since amplitude of one

single instanton is proportional to e
− 8π2

g2 and it is small when couplings is weak and becomes more important when
gauge coupling becomes stronger. It is well known that the dynamical scale is defined as

Λb0 = ϕb0e
− 8π2

g2 = ϕb0e2πτ−iθ (187)

where b0 = 2N −Nf for pure N=2 SUSY gauge theory with Nf flavors, thus for the pure SU(2) SUSY, a k-instanton
contribution is proportional to

e
− 8π
g2

k
= (

Λ4

ϕ4
)k (188)

and the non-perturbative contribution to prepotential by summing over all k-instantons is

Fnon−pert =

∞
∑

i=1

ci(
Λ4

ϕ4
)kϕ2 (189)

which also restores the U(1)R symmetry. This non-perturbative prepotential would give important effect when the
theory goes to infrared region, where the theory is strongly coupled and perturbative approach fails.

In the N=2 SUSY, a dyon(particles with both electric and magnetic charge Z = nmϕD + neϕ) with mass M , are
states bounded by the so called BPS bound, coming from the positivity of norms of helicity states of N=2 SUSY
algebra.

M ≥
√
2|Z|, with Z = nmϕD + neϕ (190)

with a non-zero central charge Z for massive states, thus it is clear BPS states those are stable for which (nm, ne) are
relatively prime.

On the complex plane, there is a SL(2, Z) symmetry defining a complex structure, a periodic grid of 2-Dimensional
lattice with periods ω1 and ω2, which implies that given a complex number z on the complex plane, we have z ∼ z+
nω1+mω2. This grid with periodicity also defines a torus by identifying opposite sides of a given parallelogram with

4 different corners and 4 sides. Given a parallelogram with periods (ω1, ω2), another periods (ω
′

1, ω
′

2) is transformed
by the matrix M ∈ SL(2, Z)(satisfying ad− bc = 1), namely

(

ω
′

1

ω
′

2

)

=M

(

ω1

ω2

)

=

(

a b
c d

)(

ω1

ω2

)

(191)

By defining the ratio τ ≡ ω1

ω2
, the two periods (τ, 1) and (τ

′

, 1) are transformed under SL(2, Z)(In fact it is

SL(2, Z)/Z2 ≡ PSL(2, Z), since ±M are equivalent to each other) and they define the same complex structure

so that tau
′

is related to τ by

τ → aτ + b

cτ + d
(192)

which generates the S and T dualities as

S =

(

0 1
−1 0

)

T =

(

1 1
0 1

)

(193)

The S and T duality together generates the SL(2, Z), thus we expect a torus in the quantum moduli space of N=2
SUSY.

We can define the holomorphic gauge coupling τ(ϕ) = ∂2F
∂ϕ2 and h ≡ ∂F

∂ϕ , so that τ = ∂h
∂ϕ . Similarly, we can make

the same definition for the dual scalar field ϕD, and also hD = ∂F
∂ϕD

, and then the dual holomorphic gauge coupling

becomes τD = ∂hD
∂ϕD

. Thus S-duality transformation maps τ to τD = − 1
τ , implies

∂hD
∂ϕD

= τD(ϕD) = − 1

τ(ϕ)
= −∂ϕ

∂h
(194)

or

ϕD = h hD = −ϕ (195)



The (h, ϕ) or equivalent (ϕD,−hD) are just periods on the complex plane, under the general SL(2, Z) duality
transformation. Under which the strongly interacting electrically charged particles can described by the weakly
coupled magnetic monopoles.

We have already determine the prepotential F in the whole complex plane, thus in principle, we can determine

the holomorphic gauge couplings τ = ∂2F
∂ϕ2 on the whole complex plane too, but we have to understand the sin-

gularities and monodromies and how the holomorphic gauge couplings changes around the singularities, since the
singularities in moduli space correspond to shrinking cycles, and are associated with massless particles.

In the ultraviolet region(ϕ→ ∞), the theory is asymptotic free and the microscopic SU(2) is weakly coupled , the
holomorphic gauge coupling(i.e. ∂̄τ = 0) is determined by definition as

τ(ϕ) =
∂2Fpert

∂ϕ2
=
i

π
(log

ϕ2

Λ2
+ 3) for ϕ→ ∞ (196)

and

ϕD(ϕ) = h =
∂Fpert

∂ϕ
=
iϕ

π
(log

ϕ2

Λ2
+ 1) for ϕ→ ∞ (197)

Because F is holomorphic,

Im[τ(ϕ)] = Im[
∂2F(ϕ)

∂ϕ2
] (198)

is a harmonic function( we have ∂z∂̄zTr[τ ] = 0, z = x + iy) and thus has no global minimum, hence can not globally
stay positive(Imτ = 4π

g2 > 0) everywhere unless it is a constant as in the classic case. Thus this harmonic function

must vanish somewhere, otherwise it is a constant. If the ϕ contour goes around the singularities, ϕD, ϕ do not
return to their initial values thus are multi-valued functions, one has a non-trivial monodromy for them.

In the Infrared region(a→ ∞), the theory is strongly coupled, and the non-perturbative prepotential effects.

Fnon−pert =

∞
∑

i=1

ci(
Λ4

ϕ4
)kϕ2 (199)

where the infinite summ represents instanton contributions and k is the instanton number and Λ is the dynamical
scale of the theory.

The monodromy transformation

(

ϕD

ϕ

)

=M

(

ϕD

ϕ

)

(200)

is equivalent to transformation to change the quantum number of magnetic and electric particles.

(nm, ne) → (nm, ne)M (201)

It then turns out that the three singularities, namely ∞,ϕ0(where ϕD = h=0 ) and −ϕ0(ϕ0 6= 0), with the monodromy
matrix separately

Mϕ0 =

(

1 0
−2 1

)

M−ϕ0 =

(

−1 2
−2 3

)

M∞ =Mϕ0M−ϕ0 =

(

−1 2
0 −1

)

(202)

The singularity at ∞ is a electric charge particle with unite electric charge (0, 1)(as the left eigenvector of Mϕ∞
),

that at ϕ0 is a magnetic monopole with unit magnetic charge (1, 0) and that at −ϕ0 is a dyon with both electric and
magnetic charges with inverse sign(1,−1).

In the complex plane, monodromies typically arise from differential equations with meromorphic(almost holomor-
phic, i.e., 1

z ) potential V (z)( If in the real space, it will be periodic potential V (x + T ) = V (x), where T is the period),
having poles at z1, . . . zp and also ∞. When z goes once around any one of the poles, the differential equation does
not change due to single-valuedness of V (z). The solutions that along any continuous path around the zi, must be
the linear combination of two independent solutions ψ1(z) and ψ2(z).

(

ψ1(z)
ψ2(z)

)

(z + e2πi(z − zi)) =Mi

(

ψ1(z)
ψ2(z)

)

(203)

with a 2 by 2 nontrivial monodromy matrix Mi for each of the poles of V that are at most 2nd order, namely the
regular singular points. Considering the fact that there are non-trivial monodromies only at ±ϕ0 and ∞ implies that



ϕD, ϕ must satisfy the a 2nd order differential equation. It is straightforward to construct a potential with at most
2nd poles at the points ±1(we have chosen normalization ϕ0 = 1, so that ϕ± 1 should be replaced with ϕ

ϕ0
±ϕ0) and

∞,

V (z) = −[
1− λ21
(1 + z)2

+
1− λ22
(1− z)2

+
1− λ21 − λ22 + λ23
(1− z)(1 + z)

] (204)

with double poles at ±1 and ∞, and corresponding residues are (1− λ2i ) for i = 1, 2, 3.
The solutions(assuming λi ≥ 0) are

ψ(z) = (1 + z)
1
2 (1−λ1)(z − 1)

1
2 (1−λ2)g((z + 1)/2) (205)

where there are tow independent solutions

g1(z) = (−z)− 1
2 (1−λ1−λ2+λ3)F (12 (1− λ1 − λ2 + λ3),

1
2 (1 + λ1 − λ2 + λ3), 1 + λ3; z

−1)

g2(z) = (1− z)λ2F (12 (1− λ1 + λ2 − λ3),
1
2 (1− λ1 + λ2 + λ3), 1 + λ2; 1− z) (206)

where F (a, b, c; z) is the hypergeometric function, one of the solutions of the hypergeometric differential equation,

z(1− z)
∂2f(z)

∂z2
+ [c− (1 + a+ b)z]

∂f(z)

∂z
− abf(z) = 0 (207)

. The two independent solutions, namely g1(z),g2(z) have simple monodromy properties around z = ∞ and z = 1

separately, thus they can be identified with ϕD and ϕ. (a)z → ∞, V (z) ∼ 1−λ2
3

z2 , the g1,2(z) behave asymptotically as

z(1±λ3)/2 for λ3 6= 0, and as
√
z and

√
z log z for λ3 = 0. (b)z → 1, λ3 = 0, V (z) ∼ 1/(1−z)2. The 2nd order differential

is the so called Picard-Fuchs equation. It turns out that once we choose the parameters λ1 = λ2 = 1, λ3 = 0, and then
the potential V (z) ∼ 1

1−z2 , the two independent solutions are

ϕD = iψ2(z) = iu−1
2 F (12 ,

1
2 , 2;

1−u
2 ) =

√
2

π

∫ u

1
dx

√
x−u√
x2−1

=
√
2

π

∫ u

1
λ =

√
2

2π

∮

γ1
λ

ϕ = −2iψ1(z) =
√
2(1 + u)1/2F (− 1

2 ,
1
2 , 1;

2
1+u ) =

√
2

π

∫ −1

−1
dx

√
x−u√
x2−1

=
√
2

π

∫ +1

−1
λ =

√
2

2π

∮

γ2
λ (208)

where γ1 is a circle goes from (1, u) on the first sheet and back from (u, 1) on the second sheet, γ2 is a circle goes once

around the cut (1, u) and (−1, 1), and the so-called Seiberg-Witten differential λ =
√
x−u√
x2−1

dx, and these integrals over

the periods, γ1,2 of the torus-ϕD =
∮

γ1
λ, ϕ ==

∮

γ2
λ, are called period integrals. There are two square-root branch

cuts run from −1 to +1 and from u to ∞. The Riemann surface of the integrand is two-sheeted with the two sheets
connected through the cuts.

The period integral along the elliptic curve on the genus-one Rieman surface

y2 = (x2 − 1)(x− u) (209)

considered above has three singularities for u = ±1 and u = ∞, and have the correct monodromies in Eq.(202) with
the vector (ϕD,ϕ) around the singularities. The monodromies are elements of the duality group SL(2, Z), which acts
on the vector ϕD,ϕ, and the eigen-value of the corresponding eigen-vector ϕD ,ϕ, just label the electric and magnetic
charge of massless particles(dynons) in the singularities(remember that the charges of the massless fields are the left
eigenvectors of the respective monodromy matrices). As analyzed before, the singularity at ∞ is the perturbative
singularity, since a unit electric charge particle become massless at this point of the moduli space, while the two
singularities at u = +1 and u = −1 occur at the strong coupling, and are non-perturbative singularities arise because
of a monopole or dyon becoming massless at the singularity u = +1 and u = 1 separately.

By defining the Seiberg-Witten meromorphic differential

λ ≡ ydx

1− x2
(210)

then the vacuum expectation values of the scalar ϕ and of the dual scalar ϕD are determined as functions of the
modulus u by integrating the meromorphic differential form λ over the appropriately chosen cycles γ1, γ2 = γ1D of
the Riemann surface:

ϕD(u) ≡ ∂F(ϕ)
∂ϕ =

√
2

2π

∮

γ1
λ =

√
2

π

∫ u

Λ2 λ

ϕ(u) =
√
2

2π

∮

γ2
λ =

√
2

π

∫ +Λ2

−Λ2 λ (211)



where

u ≡< Trφ2 >, < φ >= ϕ
σ3

2
(212)

and we have tracked back to the normalization conditions so that u0 = 1 is recovered to be u0 = Λ2(We can also
track further back, the Seiberg-Witten elliptic curve in Eq.(209) restores as y2 = (x2 − u20)(x − u) = (x2 − Λ4)(x − u),

with three singularities u = ±u0 = ±Λ2 and u = ∞, the meromorphic differential become λ = ydx
Λ4−x2 ).

Solving 2nd equation inversely to get u(ϕ), insert into the 1st equation to obtain ϕD(ϕ), integrate out with respect
to ϕ, we find the prepotential F and thus the low-energy effective Lagrangian for N=2 SUSY theory is determined
and so does the low energy dynamics. As u goes around ±1 or ∞, the circles γ1,2 are changed into a linear combina-
tion with integer coefficients with the SL(2, Z) symmetry transforming on the complex plane.

Last but not the least, we get the holomorphic gauge couplings is the 2nd derivative of the the holomorphic
prepotential FSW .

τ(u) =
dϕD/du

dϕ/du
=
ωD(u)

ω(u)
=
∂2FSW

∂ϕ2
=

4πi

g2(u)
+
ϑ(u)

2π
(213)

where ωD and ω are the periods associated with the circle γ1 and γ2, separately. The equation describer the complex
structure of the torus with guarantee Im[τ(u)] = 4π

g2 > 0 for the positivity of the effective gauge coupling (or for the

positivity of metric on the moduli space). From the holomorphic gauge couplings, we can also establish the metric
on the moduli space,

gzz̄ ∼ ∂F
∂ϕ

(214)

With above observation, the low-energy solution can be obtained by introducing an auxiliary Riemann surface
of genus equal to the rank of the gauge group(i.e., for SU(5), r=4, the genus is 4). All holomorphic quantities can
be computed as elliptic integrals over the surface, which already encode the singularity structure of the theory, and
turns out to be a hyper-elliptic surface in most cases,

y2 = P (x, ui,Λ) (215)

where P is a polynomial in auxiliary parameter x, the coordinates on the moduli space ui and the dynamical scale
of the theory Λ. Thus to find the exact low-energy action is equivalent to find the the polynomial P that describing
the hyper-elliptic surface, from which one can extract information about the dynamics of the theory, namely, the

effective gauge couplings(τ = F ′′

), the metric on the moduli space(F ′

)and the spectrum of PBS states(M ∼ Z =

(nm, ne)

(

ϕD

ϕ

)

). Note, the hyper-elliptic surface obtained in the limit Λ → 0 is singular everywhere on the moduli

space and just reflect the fact that turning off the gauge couplings will result in additional massless gauge bosons
independently of the vacuum expectation values of the scalars, since there is no Higgs mechanism in this limit.
Therefore the dynamical scale Λ has to appear as a parameter of the full Seiberg-Witten theory so that the classical
singularities must be smoothed out by physic effects proportional to non-zero Λ, except the singularity at 0, which
indicating the existence of additional massless particles.
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APPENDIX A: DIMENSION OF IRREDUCIBLE REPRESENTATION, DENKIN INDEX AND ANOMALY COEFFICIENT
OF CLASSICAL LIE GROUPS

Notation: Irrep represents Irreducible representation R, Dim(R) is dimension of Irreducible representation,
c(R) = 2T (R) is Denkin index and A(R) is anomaly coefficient.



TABLE VI: SU(N)

Irrep R Dim(R) c(R)=2T(R) A(R)
[1] N 1 1
Adj N2

− 1 2N 0

[1, 0] N(N−1)
2

N − 2 N − 4

[2] N(N+1)
2

N + 2 N + 4

[1, 0, 0] N(N−1)(N−2)
6

(N−2)(N−3)
2

(N−3)(N−6)
2

[3] N(N+1)(N+2)
6

(N+2)(N+3)
2

(N+3)(N+6)
2

[2, 1] N(N2
−1)

3
N2

− 3 N2
− 9

[2, 0] N2(N2
−1)

12
N(N2

−4)
3

N(N2
−16)

3

[4] N(N+1)(N+2)(N+3)
24

(N+2)(N+3)(N+4)
6

(N+3)(N+4)(N+8)
6

[2, 1, 0] N(N+1)(N−1)(N−2)
8

(N−2)(N2
−N−4)

2
(N−4)(N2

−N−8)
2

TABLE VII: Direct tensor product of two representation

Irrep R Dim(R)=d(R) c(R)=2T(R) A(R)
R1 × R2 d(R1)d(R2) d(R1)c(R2) + c(R1)d(R2) d(R1)A(R2) + A(R1)d(R2)

[1] Note: For N=4 SUSY, the beta function vanish so the gauge coupling does not run and stay marginal in the quantum theory
as in the classical theory. The SU(4)R symmetry of N=4 SUSY is isomorphic to SO(6), the sphere space with positive curva-
ture. In terms of AdS/CFT correspondence, it is this SO(6) isometry corresponds to N=4 R symmetry. On the other hand,
The isometry of AdS5, a space with constant negative curvature, is SO(4, 2), which is precisely the same group as the 4D
conformal symmetry group(CFT)

[2] For N=8 SUSY, graviton and gravitino appear. For more detail, refer to Stefan’s notes on supergravity.
[3] Note: For more detail on Instanton, see Yuhsin’s note.
[4] Note: For the application of Seiberg Duality in dynamical SUSY breaking in meta-stable vacua, see Flip’s note on ISS

model(Intriligator, Seiberg, and Shih)in BSM Journal Club, Fall 2009 for more detail. For more basic introduction to notations
and terms on dynamical SUSY breaking, see Johannes’s note on Dynamical SUSY breaking.
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