

arXiv:1004.2037[v2]

In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai LEPP Particle Theory Pizza Seminar, 4 Feb 2011

A long time ago in a galaxy far, far away

(One year ago in Newman Lab, Yuhsin's last talk)

- Anarchic RS flavor model
- Loop calculation of $\mu \to e \gamma$
- Mild tension with tree-level constraints
- Matching 5D and KK formalisms

New developments

- Goldstone cancellation* & many more diagrams
- Mild non-tension with tree-level flavor constraints
- Empire: 'anarchic' models aren't so anarchic
- Finiteness from 5D power counting
- Comments on two-loop structure.

* thanks to M. Blanke, K. Agashe, Y. Hori, T. Okui

Reminder: Randall-Sundrum

$$ds^2 = \left(\frac{R}{z}\right)^2 (dx^2 - dz^2)$$

Randall, Sundrum (99);

Reminder: Randall-Sundrum

$$ds^2 = \left(\frac{R}{z}\right)^2 \left(dx^2 - dz^2\right)$$

Randall, Sundrum (99); Davoudiasl, Hewett, Rizzo (99); Grossman, Neubert (00); Gherghetta, Pomarol (00); **Bulk Higgs:** Agashe, Contino, Pomarol (04); Davoudiasl, Lille, Rizzo (05)

Reminder: Yukawa matrices

$$Y_{ij}^{(4D)} = f_i Y_{ij}^* f_j$$
 $f_i = \sqrt{\frac{1 - 2c_i}{1 - (R/R')^{1 - 2c_i}}}$

Flavor: Huber, Shafi (03); Burdman (03); Kalil, Mohapatra (04); Agashe, Perez, Soni (04); Chen (05); Agashe, Blechman, Petriello (06); Davidson, Isidori, Uhlig (07); Csáki, Falkowski, Weiler (08); Chen, H.B. Yu (08); Agashe, Okui, Sundrum (08); Chen, Mahanthappa, F. Yu (09), ...

Anarchic Flavor in RS

Definition: anarchic matrix

All entries $\mathcal{O}(1)$ with arbitrary phase. The product of anarchic matrices is also anarchic. Assumption: this is true in all preferred bases.

$$Y_{ij}^{(4D)} = f_i Y_{ij}^* f_j$$
 $f_i = \sqrt{\frac{1 - 2c_i}{1 - (R/R')^{1 - 2c_i}}}$

The Y_{ij}^* are anarchic matrices that are 5D parameters,

$$Y_{ij}^* = Y_* \bigoplus_{ij}$$

The mass heirarchy $m_i = f_i Y_{ii}^* f_i v$ comes from the exponentially small overlap of the zero-mode fermions with the Higgs vev. This is controlled by the fermion bulk masses, $c_i \sim 0.51 - 0.8$.

Lepton Flavor Violation

Penguin constraints

Assuming the mass hierarchies are controlled by the f_i s, we would like to constrain the anarchic and KK scales: Y_* and M_{KK} .

$$\mathcal{M}_{\mathsf{loop}} \sim \left(\frac{1}{M_{\mathsf{KK}}}\right)^2 f_{\mathsf{L}} Y_*^3 f_{-\mathsf{E}} \ \sim \left(\frac{1}{M_{\mathsf{KK}}}\right)^2 Y_*^2 m$$

Decoupling: \mathcal{M} goes like negative power of M_{KK} . 'No coupling': \mathcal{M} goes like positive power of Y_* .

Lepton Flavor Violation

Tree level constraints

$$\mathcal{M}_{\mathsf{tree}} \sim \left(rac{1}{\mathit{M}_{\mathsf{KK}}}
ight)^2 \left(rac{1}{Y_*}
ight)$$

Must maintain SM spectrum $m_i \sim f_i Y_{ii}^* f_i v$. As Y_* increases, zero-mode fermion profiles are pushed away from the IR brane. This reduces their overlap with the non-universal part of the Z.

Lepton Flavor Violation

A possible tension between tree- and loop-level bounds

• Tree-level bound:
$$\left(\frac{3 \text{ TeV}}{M_{\text{KK}}}\right)^2 \left(\frac{2}{Y_*}\right) < 0.5$$
, 1.6 (Custodial)

• Penguin bound:
$$|aY_*|^2 + b |\left(\frac{3 \text{ TeV}}{M_{KK}}\right)^2 \le 0.015$$

What the heck is this?

Tree: Chang & Ng '05. Loop NDA: Agashe et al. '06

Operator analysis of $\mu \rightarrow e \gamma$

Match to 4D EFT, integrate over each z_i :

$$R'^2 \frac{e}{16\pi^2} \frac{v}{\sqrt{2}} f_{L_i} \left(\frac{\mathbf{a}_{k\ell} \mathbf{Y}_{ik} \mathbf{Y}_{k\ell}^{\dagger}}{\mathbf{Y}_{k\ell}} \frac{\mathbf{Y}_{\ell j} + \mathbf{b}_{ij} \mathbf{Y}_{ij}}{\mathbf{Y}_{ij}} \right) f_{-E_j} \overline{L}_i^{(0)} \sigma^{\mu\nu} E_j^{(0)} F_{\mu\nu}^{(0)}$$

- These may be Y_E or Y_N
- For $c_i = c$, Y_{ij} is a spurion of $U(3)^3$ lepton flavor
- Higher (odd) powers of Y_{ij} suppressed by $vR'\sim 0.1$
- Indices on a_{ij} and b_{ij} encode bulk mass dependence

Operator analysis of $\mu \rightarrow e\gamma$: alignment

Definition: anarchic matrix,

All entries $\mathcal{O}(1)$ with arbitrary phase. The product of anarchic matrices is also anarchic. Assumption: this is true in all preferred bases.

$${\it R'^2} \frac{e}{16\pi^2} \frac{v}{\sqrt{2}} f_{L_i} \left(a_{k\ell} Y_{ik} Y_{k\ell}^\dagger Y_{\ell j} + \frac{b_{ij}}{b_{ij}} Y_{ij} \right) f_{-E_j} \bar{L}_i^{(0)} \sigma^{\mu\nu} E_j^{(0)} F_{\mu\nu}^{(0)}$$

Compare to zero mode mass matrix: $m_{ij} = f_{L_i} Y_{ij}^* f_{-E_j} v$

- Up to the bulk mass non-universality, the b terms have the flavor structure of 4D mass terms
- Alignment: b_{ij} term almost diagonalized in the mass basis
- ⇒ Structure Behind anarchy. The empire strikes back!

Alignment in RS: Agashe, Perez, Soni '04; Agashe, Azatov, Zhu '08.

A bunch of diagrams: a and b coefficients

$$R^{\prime 2} \frac{e}{16\pi^{2}} \frac{v}{\sqrt{2}} f_{L_{i}} \left(a_{k\ell} Y_{ik} Y_{k\ell}^{\dagger} Y_{\ell j} + b_{ij} Y_{ij} \right) f_{-E_{j}} \bar{L}_{i}^{(0)} \sigma^{\mu\nu} E_{j}^{(0)} F_{\mu\nu}^{(0)}$$

$$+ H^{0}, G^{0} \qquad H^{0}, G^{0} \qquad H^{\pm} \qquad H^{\pm}$$

$$+ L^{+} \qquad + L^{+}$$

The structure of RS penguins: a coefficient

- A. Mass insertion $\sim 10^{-1}$ per insertion (cross)
- B. Equation of motion $\sim 10^{-4}$ (external arrows point same way)
- C. Higgs/Goldstone cancellation $\sim 10^{-3}~(H^0,~G^0$ diagram only)
- D. Proportional to charged scalar mass $\sim 10^{-2}$

The structure of RS penguins: b coefficient

- A. Mass insertion $\sim 10^{-1}$ per insertion (cross)
- B. Equation of motion $\sim 10^{-4}$ (external arrows point same way)
- E. No sum over internal flavors $\sim 10^{-1}$

Gauge boson diagrams are enhanced by

$$g_5^2/g^2 = \ln R'/R \sim \mathcal{O}(10)$$

This is a common factor for the b diagrams, and ends up being cancelled by a numerical factor of 1/10 in the 3MIZ a diagram.

Leading order diagrams

Three coefficients (a_H, a_Z, b) with arbitrary relative signs Defined $aY_*^3 = \sum_{k,\ell} a_{k\ell} Y_{ik} Y_{k\ell}^\dagger Y_{\ell j}$ and $bY_* = \sum_{k,\ell} (U_L)_{ik} b_{k\ell} Y_{k\ell} (U_R^\dagger)_{\ell j}$

So, 'just calculate' these: (many details in paper)

- 5D position/momentum space: external zero modes
- Mass insertion approximation, but sum over all KK modes
- Gauge invariance: only identify $(p + p')^{\mu}$ coefficient

Representative Bounds

Finiteness: naïve dimensional analysis

4D Naïve:
$$\int d^4 k \, \Delta_F \gamma^\mu \Delta_F \Delta_B \sim \log(\Lambda)$$

Really log divergent? No, finite. Here's why:

- Gauge invariance: $q_{\mu}\mathcal{M}^{\mu}=0$.
- Lorentz invariance: $\int d^4k \, \frac{k}{k^{2n}} = 0$.

Indeed, $\mathcal{M}_{4D} \sim \Lambda^{-2}.$ Suspect that $\mathcal{M}_{5D} \sim \Lambda^{-1}.$

Finiteness: bulk 5D fields

	4	- +()+
	Neutral	Charged
Loop integral (d^4k)	+4	+4
Gauge invariance $(p + p')$	-1	-1
Bulk boson propagator	-1	-2
Bulk vertices (dz)	-3	-3
Overall z-momentum	+1	+1
Derivative coupling	0	+1
Mass insertion/EOM	-1	-1
Total degree of divergence	- <u>1</u> / ·	A -1

Note: everything trivially carries over to the KK picture

		٠ بر	سرنه
	Neutral	$\sf Charged$	$W ext{-}H^\pm$
Loop integral (d^4k)	+4	+4	+4
Gauge invariance $(p+p')$	-1	-1	-1
Brane boson propagators	-2	-4	-2
Bulk boson propagator	0	0	-1
Bulk vertices (dz)	-1	0	-1
Derivative coupling	0	+1	0
Brane chiral cancellation	-1	, 0	0
Brane M_W^2 cancellation	0 /	42	0
Total degree of divergence	· -1 /	-2	

The M_W^2 cancellation comes from the form of the photon coupling to the brane-localized H^{\pm} :

$$\frac{(2k-p-p')^{\mu}}{[(k-p')^2-M_W^2][(k-p)^2-M_W^2]} = \frac{(p+p')^{\mu}}{(k^2-M_W^2)^2} \left[\frac{k^2}{k^2-M_W^2} - 1 \right]$$
$$= \frac{M_W^2(p+p')^{\mu}}{(k^2-M_W^2)^3} \sim \mathcal{O}(1/k^6)$$

We have used the fact that the $(p + p')^{\mu}$ coefficient gives the complete gauge-invariant contribution.

	+(j+	+(+{
	Neutral	Charged	$W-H^{\pm}$
Loop integral (d^4k)	+4	+4	+4
Gauge invariance $(p + p')$	$^{ op4}$	+ 4 -1	-1
Brane boson propagators	-2	_4	-2
Bulk boson propagator	0	0	-1
Bulk vertices (dz)	-1	0	_1
Photon Feynman rule	0	+1	0
Brane chiral cancellation	-1	0	0
Brane M_W^2 cancellation	0 /	42	0
Total degree of divergence	· -1 /	-2	

The **chiral cancellation** comes from the UV structure of the sum of the two diagrams:

Fermion propagator goes like $\Delta \sim k \!\!\!/ + k \gamma^5$, numerator structures are

$$\mathcal{M}_{a} \sim k \gamma^{\mu} k k - k \gamma^{\mu} k k = k^{2} (k \gamma^{\mu} - \gamma^{\mu} k)$$

$$\mathcal{M}_{b} \sim k k \gamma^{\mu} k - k k \gamma^{\mu} k = k^{2} (\gamma^{\mu} k - k \gamma^{\mu})$$

This is hard to see in the KK picture! See Agashe et al. '06

Perturbativity and the 2-loop result

Yin-yang and double rainbow topologies. Insert a photon and odd number of mass insertions. Dotted line represents gauge or Higgs boson.

Purely bulk fields:

Loop integrals (d^4k)	+8
Gauge invariance $(p+p')$	-1
Bulk boson propagators	-2
Bulk vertices (dz)	-5
Total degree of divergence	0

 $Log \Lambda \Rightarrow large perturbative regime$

Must do full calculation

Like 1-loop, hard to determine brane Higgs power counting. It may not be unreasonable to expect 1-loop cancellations to carry over to 2-loop.

The disappearing KK term

5D Lorentz invariance: must take the $M_n = nM_{KK}$ and $\Lambda = \lambda M_{KK}$ cutoffs together. Otherwise might lose leading term!

$$\mathcal{M}_{\textit{H}^0} = \frac{\textit{gv}}{16\pi^2} \textit{f}_{\mu} \textit{f}_{-e} \bar{\textit{u}}_e (\textit{p} + \textit{p}')^{\mu} \textit{u}_{\mu} \times \frac{1}{\textit{M}^2} \left[\frac{\textit{c}_0}{\textit{c}_0} + \mathcal{O}\left(\frac{\textit{v}}{\textit{M}}\right)^2 \right]$$

$$c_0 = -\lambda^2 \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\lambda^2 (n^2 + m^2) + 2n^2 m^2}{4 (n^2 + \lambda^2)^2 (m^2 + \lambda^2)^2} \equiv -\frac{1}{\lambda^2} \sum_{n=1}^{N} \sum_{m=1}^{N} \hat{c}_0(n, m),$$

$$\hat{c}_0(n,n) \longrightarrow \left(\frac{n}{\lambda}\right)^2 \quad \text{for } n \ll \lambda$$

$$\hat{c}_0(n,n) \longrightarrow \left(\frac{n}{\lambda}\right)^0 \quad \text{for } n \approx \lambda$$

$$\hat{c}_0(n,n) \longrightarrow \left(\frac{\lambda}{n}\right)^4 \quad \text{for } n \gg \lambda.$$

Dominant contribution from $n \approx \lambda$. Taking $\lambda \to \infty$ for fixed n will lose this term! This is not a non-decoupling effect, just EFT.

Flight of the Warped Penguins

Future directions with local collaborators

- 1. Bulk Higgs models (integrals are much nastier)
- 2. $b \rightarrow s\gamma$ (operator mixing with $b \rightarrow sg$, quark c hierarchy)

No Goldstone cancellation!

Conclusion

Calculation of $\mu \to e \gamma$ in a warped extra dimension:

- Mild non-tension for between loop- and tree-level bounds
- Three separate flavor structures $(Y_E Y_N^{\dagger} Y_N, Y_E Y_E^{\dagger} Y_E, Y_E)$
- Finite at one-loop, reasonable to expect perturbativity
- 5D calculation can make certain features more transparent

Thanks!

Gauge invariance

This is a **dipole operator** and the Ward identity forces the gauge invariant amplitude to take the form

$$\mathcal{M} = \epsilon_{\mu} \mathcal{M}^{\mu} \sim \epsilon_{\mu} \bar{u}_{p'} \left[(p + p')^{\mu} - (m_{\mu} + m_e) \gamma^{\mu} \right] u_p$$

Thus it is sufficient to calculate the coefficient of the $(p+p')^{\mu}$ term in \mathcal{M}^{μ} to determine the overall gauge invariant amplitude.

Diagrams which are not 1PI, such as external photon emissions, are gauge redundant to the 1PI diagrams.

Lavoura '03

The standard $\mu \rightarrow e \gamma$ EFT

Traditional parameterization for the $\mu \to e \gamma$ amplitude

$$\frac{-iC_{L,R}}{2m_{\mu}}\bar{u}_{L,R}\,\sigma^{\mu\nu}\,u_{R,L}F_{\mu\nu},$$

For the case of RS,

$$C_{L,R} = \left(aY_*^3 + bY_*\right)R'^2 rac{e}{16\pi^2} rac{v}{\sqrt{2}} 2m_\mu f_{L_{2,1}} f_{-E_{1,2}}$$

$$\operatorname{Br}(\mu \to e \gamma) = \frac{12\pi^2}{(G_F m_\mu^2)^2} (|C_L|^2 + |C_R|^2) < 1.2 \cdot 10^{-11}.$$

Trick: $C_L^2 + C_R^2 \ge 2C_LC_R$

$$\mathsf{Br}(\mu o e \gamma) \geq 6 \left| a Y_*^2 + b \right|^2 rac{lpha}{4\pi} \left(rac{R'^2}{G_F} \right)^2 rac{m_e}{m_\mu}$$

Operator subtleties

EFT: match amplitude to Wilson coefficient.

Important caveat in higher dimensions 5D amplitudes with 4D external states are non-local.

$$\mathcal{M}_{5D} = C(\underline{z_H}, \underline{z_L}, \underline{z_E}, \underline{z_A}) H(\underline{z_H}) \cdot \overline{L}_i(\underline{z_L}) \sigma^{MN} E_j(\underline{z_E}) F_{MN}(\underline{z_A})$$

Must integrate over each z_i independently.

Pathological e.g.: $H(z) \sim \delta(z - R')$. What happens to operators like $|H|^2$?

Another e.g.: Cannot write a 'naïve' local effective operator for bulk fields coupled through a heavy brane-localized field.

$$\mathcal{O}_{\text{UV}} \sim \Phi^3(z) \delta(z-R') \qquad \mathcal{O}_{\text{EFT}} \sim \Phi^3(z). \label{eq:output}$$

UV theory: brane-localized operator. IR theory: bulk fields ⇒ bulk operator.

Mixed 5D position/momentum space

Mixed position/momentum space: (p^{μ}, z)

Due to the explicit z-dependence of the geometry and the localization of the Higgs, it is natural to work in mixed space.

$$\int d^d k \frac{i}{k^2} e^{-ik \cdot (x-x')} \Rightarrow \int d^d k_z \frac{i}{k^2 - k_z^2} e^{ik_z(z-z')}$$

- Usual momentum space in Minkowski directions
- Propagator dimension: $[\Delta_{5D}] = [\Delta_{4D}] + 1$
- ullet Each vertex: perform dz overlap integral $\sim 1/k$
- External states carry zero-mode z-profile

5D Feynman rules

See our paper for lots of appendices on performing 5D calculations.

$$= ig_5 \left(\frac{R}{z}\right)^4 \gamma^{\mu}$$

$$= ie_5 (p_+ - p_-)_{\mu}$$

$$= \frac{i}{2} e_5 g_5 v \eta^{\mu\nu}$$

$$= i \left(\frac{R}{R'}\right)^3 Y_5$$

$$= \Delta_k(z, z')$$

$$\sim \sim = -i\eta^{\mu\nu} G_k(z, z')$$

$$= e^{\mu}(q) f_A^{(0)}$$

$$= \frac{f_c}{\sqrt{R'}} \left(\frac{z}{R}\right)^2 \left(\frac{z}{R'}\right)^{-c} u(p)$$

$$g_5^2 = g_{\rm SM}^2 R \ln R'/R$$

$$e_5 f_A^{(0)} = e_{\rm SM}$$

$$Y_5 = RY$$

Analytic expressions

$$\begin{split} \mathcal{M}(1\mathsf{MI}H^{\pm}) &= \frac{i}{16\pi^2} \left(R'\right)^2 f_{c_L} Y_E Y_N^{\dagger} Y_N f_{-c_E} \frac{\mathsf{ev}}{\sqrt{2}} \cdot 2 I_{1\mathsf{MI}H^{\pm}} \\ \mathcal{M}(3\mathsf{MI}Z) &= \frac{i}{16\pi^2} \left(R'\right)^2 f_{c_L} Y_E Y_E^{\dagger} Y_E f_{-c_E} \frac{\mathsf{ev}}{\sqrt{2}} \left(g^2 \ln \frac{R'}{R}\right) \left(\frac{R' \mathsf{v}}{\sqrt{2}}\right)^2 \cdot I_{3\mathsf{MI}Z} \\ \mathcal{M}(1\mathsf{MI}Z) &= \frac{i}{16\pi^2} \left(R'\right)^2 f_{c_L} Y_E f_{-c_E} \frac{\mathsf{ev}}{\sqrt{2}} \left(g^2 \ln \frac{R'}{R}\right) \cdot I_{1\mathsf{MI}Z}. \end{split}$$

Written in terms of dimensionless integrals. See paper for explicit formulae

Power counting for the brane-localized Higgs

Charged Higgs: same M_W^2 cancellation argument as 5D

Neutral Higgs: Much more subtle!

A basis of chiral KK fermions:

$$\chi = \left(\chi_{L_i}^{(0)}, \chi_{R_i}^{(1)}, \chi_{L_i}^{(1)}\right) \qquad \qquad \psi = \left(\psi_{R_i}^{(0)}, \psi_{R_i}^{(1)}, \psi_{L_i}^{(1)}\right)$$

Worry about the following type of diagram:

The (KK) mass term in the propagator can be $\sim \Lambda$. Have to show that the mixing with large KK numbers is small.

Power counting for the brane-localized Higgs

A basis of chiral KK fermions:

$$\psi = \left(\psi_{R_i}^{(0)}, \psi_{R_i}^{(1)}, \psi_{L_i}^{(1)}\right) \qquad \qquad \chi = \left(\chi_{L_i}^{(0)}, \chi_{R_i}^{(1)}, \chi_{L_i}^{(1)}\right)$$

Mass and Yukawa matrices (gauge basis, $\psi M \chi + \text{h.c.}$):

$$M = \begin{pmatrix} m^{11} & 0 & m^{13} \\ m^{21} & M_{KK,1} & m^{23} \\ 0 & 0 & M_{KK,2} \end{pmatrix} \qquad y \sim \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

The zeroes are fixed by gauge invariance.

$$\hat{y}_{1J}\hat{y}_{J2}=0$$

Indices run from 1,..., 9 labeling flavor and KK number

Power counting for the brane-localized Higgs

$$\begin{aligned} \psi &= \left(\psi_{R_i}^{(0)}, \psi_{R_i}^{(1)}, \psi_{L_i}^{(1)} \right) \\ \chi &= \left(\chi_{L_i}^{(0)}, \chi_{R_i}^{(1)}, \chi_{L_i}^{(1)} \right) \end{aligned} \qquad M = \begin{pmatrix} m^{11} & 0 & m^{13} \\ m^{21} & M_{\text{KK},1} & m^{23} \\ 0 & 0 & M_{\text{KK},2} \end{pmatrix}$$

Rotating to the mass basis, $\epsilon \sim v/M_{\rm KK}$:

$$\hat{y} \sim \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \epsilon & 1 \\ 1 & & \\ \epsilon & & \end{pmatrix}$$

Now we have $y_{1J}y_{J2} \sim \epsilon$, good!

Power counting for the brane-localized Higgs

$$\psi = \left(\psi_{R_i}^{(0)}, \psi_{R_i}^{(1)}, \psi_{L_i}^{(1)}\right) \\ \chi = \left(\chi_{L_i}^{(0)}, \chi_{R_i}^{(1)}, \chi_{L_i}^{(1)}\right)$$

$$M = \begin{pmatrix} m^{11} & 0 & m^{13} \\ m^{21} & M_{\text{KK},1} & m^{23} \\ 0 & 0 & M_{\text{KK},2} \end{pmatrix}$$

Rotating to the mass basis, $\epsilon \sim v/M_{\rm KK}$:

$$\hat{\mathbf{y}} \sim \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \epsilon & 1 \\ 1 & \\ \epsilon & \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \mathbf{1} + \epsilon & -\mathbf{1} + \epsilon \\ 1 + \epsilon & \\ \mathbf{1} - \epsilon & \end{pmatrix}$$

Must include 'large' rotation of m^{21} and m^{13} blocks representing mixing of chiral zero modes into light Dirac SM fermions. This mixes wrong-chirality states and does not affect the mixing with same-chirality KK modes.

Indeed, $\mathcal{O}(1)$ factors cancel: $y_{1J}y_{J2} \sim \epsilon$, good!

Image Credits and Colophon

- Empire Strikes Back logo adapted from LucasArts
- Rebel alliance 'penguin' from Free Range Duck
- Beamer theme Flip, available online http://www.lepp.cornell.edu/~pt267/docs.html
- All other images were made by Flip using TikZ and Illustrator

 $^{25}/_{25}$