Read Griffiths chapters 4

- 1. When π^- are stopped in liquid deuterium, they are captured in an S-wave orbit. From this orbit can the following reactions occur? How DO I DECECH WE
 - (a) $\pi^- d \rightarrow \pi^0 nn$

(b) $\pi^- d \rightarrow \gamma nn$

Recall that deuterium is a 1⁺ state, and consider conservation of angular momentum and parity.

- 2. The η is a pseudoscalar ($J^{PC}=0^{-+}$) meson with I=0. Are the following decays allowed, and if so by what interaction? (Hint: as long as at least one decay occurs by (a) $\eta \to \pi^0 \pi^0$ (b) $\eta \to \pi^+ \pi^-$ (c) $\eta \to \pi^0 \pi^0 \pi^0$ the Strong or EM interaction, Weak decays will be very heavily suppressed and can be

Le pusto? Comes south Consider conservation of angular momentum, parity and charge conjugation.

- 3. The $\rho(770)$ is an I=1 meson of u and d quarks, in a 3S_1 state. Why doesn't the ρ^0 decay to $\pi^0\pi^0$? When $\mathfrak{C}=(-1)^{1+5}$ and $\mathfrak{C}=(-1)^{1+5}$ 4. The $K^*(892)$ is the 3S_1 strange meson, where K^{*+} is $u\bar{s}$ and K^{*0} is $d\bar{s}$.

See

- (a) By what force does the K^* decay? Why?
- (b) Determine the branching ratios for the charged and neutral decays of $K^* \to K\pi$, ie. $K^{*+} \to K^0 \pi^+$, $K^{*+} \to K^+ \pi^0$, $K^{*0} \to K^0 \pi^{\mathbb{P}}$, and $K^{*} \to K^+ \pi^-$.

 Why doesn't $K^{*0} \to K^- \pi^+$ occur?
- (c) Why doesn't $K^{*0} \to K^-\pi^+$ occur?
- (d) Make an order of magnitude estimate for the branching ratios $K^* \to K\gamma$ and $K^* \to \pi\pi$. Compare these against the PDG values.
- 5. The Λ is the uds baryon.

de con more true

- (a) By what force does the Λ decay? Why?
- (b) The two dominant Λ decay modes are $\Lambda \to p\pi^-$ and $\Lambda \to n\pi^0$. Assuming the $\Delta I = 1/2$ rule holds what are the branching ratios for these two modes?
- (c) Compare your answers against the PDG values.
- (d) Draw the Feynman diagrams for these two decay modes.

Whey Not Strange we says?

(ξ) K+ >π+πο

(ξ) κ+ ο >ποπο

(ξ)

(7=2 | H | I=0) = M1/2 (3/2 | H | I=0) = M3/2

M3/2 = 1 M1/2