Physics 3318, Spring 2013

Assignment 5
Due date: Wednesday, March 6

l. H&F 4.14
2. H&F 4.17

3. Repeat the calculation in lecture, of the two orbital frequencies wy (orbit completion)
and w, (radial oscillation) when the force law is sli ghtly different from a pure inverse
square. Specifically, take as the potential U (r) — which includes the “centrifugal
barrier” — the function

As before, A = GM;M, and B = Lf/ 2u. The last term, with strength C, arises
when the mass distribution within one of the bodies is non-spherical. For example,
a moon or spacecraft in orbit within the equatorial plane of Jupiter will experience
a potential of exactly this form (a gravitational “quadrupole™). It is important that
you treat (' as a tiny correction. In fact, you should in all your calculations keep
only the lowest order correction caused by (nonzero) C. Here is a guide to your
calculations:

(a) Calculate the new, corrected, equilibrium radius
rL=Tg A,

where 7y = 2B/Aand --- is asingle term proportional to C.
(b) Calculate the correction to the curvature of I/ at the new equilibrium point:
A C
K= UH(Tl) =3 +O&—5.
9 70
Here we have given you the answer up to a numerical factor o (which you need
to find).

(c) Calculate the corrections to wy and w, (again, keeping only terms proportional

to C).
(d) Form the ratio

C
wefwg =1+ ﬁﬁ
0
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(yes, you need to find the number 3) and from this determine the excess or
deficit angle 46 by which the orbit fails to close. In other words, you will have
found that the axis of the orbit (defined by radial motion) precesses by 60 over
the course of one radial oscillation, i.e. from one periapsis to the next.

4. Two stars in a bound binary system have mass ratio A/m = 2 and their distance of
furthest and nearest separation has ratio 7., /Tmin = 3. Make a diagram that traces
out the orbit of each star in the rest frame of the system, identifying a few pairs of
corresponding positions including the positions of furthest and nearest separation.
Base your plots on the orbit of the relative position vector,
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blem 12*: (Explosion of projectile) A projectile in outer space subjected to no
ernal forces suddenly explodes into three pieces, which have Cartesian coordinates
¥,, T3 With respect to an inertial reference frame. The three masses are m, 2, and

Assume that the forces during the explosion are not known, but it is believed that
ey can be derived from potentials depending only on the distances between pairs of

V = Vo(IF, = Fal) + V(72 — Fa) + V(7 — 7). (4.96)

‘Show that the center of mass moves at the same constant velocity it had before the
‘explosion. )
'Show that, in the center of mass reference frame, the three fragments lie in a plane

at passes within a distan
after the explosion. Hint: Prove that the total momentum in this reference frame

mel from the tunnel cent
«agrangian mechanics (n
he equation of motion for
rticle moves under gravity
is simple harmonic motion

is zero. _

Derive what happens to the center of mass after the explosion if instead of being
wexternal force-free.” the system also had a constant gravitational force on it.
Does the result depend on the force being a constant? Is the total momentum of
the fragments still zero in the noninertial center of mass reference frame?

al Force Problems

voblema 13: (Massive particle moving ona cone) Amassive particle moves under the
following incorrect deriva- cceleration of gravity, g, and without friction on the surface of a cone of revolution
e part of the Earth’s mass : '_'ith half angle «. Find the Lagrangian in plane polar coordinates. Also find the
- quation of motion for r and the effective potential Veg(r). If the particle is launched
orizontally with velocity vp at a height zo, prove that the condition for circular motion

2
Yy = £Z0.

oblem 14*: Mo connected masses) Two masses m, and m, are connected by a
ye1ghtie ng of fixed total length I;. Mass m, rests on a frictionless table, which
as a small hole cut into it. Mass m, hangs down vertically from this hole. Assume
hat m, can only move in the vertical direction, so the problem has two degrees of
reedom.

part b), and what is wrong

) Assuming that the acceleration of gravity is g, find the Lagrangian and the equa-
" tions of motion for this system. (Use plane polar coordinates.)

The total energy E = T + V is a constant of the motion. How can you see this by
inspection of the Lagrangian? There is a second constant of the motion. Explain
how to find it, and prove that it is indeed constant. (Call this constant [). What is
the physical interpretation of [7

Is there a case where the motion of the mmass m, is a circle of constant radius ro
from the hole in the table? Find the radius of this circle in terms of /, m;, m2, and
g. Let E(ro) be the total energy in this case. Prove that E (ro) = %Mle”o. Why is
E(ry) the minimum possible total encrgy E7?

70 massive bodies move in
stion can be reduced to an
: problem.

dy system, if the externa
e a single particle of mas
b ... Fy. Use Lagrangian
qmal forces as far as cente
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d) For E > E(rg), solve the radial equation of motion. Put the solution in terms of E
and {, the constants of the motion. Express the solution as an integral (“solution
by quadratures”) that gives the time as a function of r. Is this sufficient to specify
the solution completely? How would you find the tarning points of the motion?
The period? , A

Suppose you treated the EOM for the radial equation as generated by a
fictitious 1-D potential? What would be this potential? Find the effective one-
dimensional potential Ves(r) and draw a graph of Vg versus 7.

b)

e)

Problem 15: (Arbitrary central force) Suppose you have an arbitrary central force
potential V(r). Make the r = % transformation and find the differential equation for
u{¢). Work out the explicit form of the differential equation in u if V(r) = —;’% with
k, B constants,

Problem 16: (Using Maupertuis® Principle instead of u = } transformation) Mau-
pertuis’ Principle states that A f T ds = 0, where A is a variation between fixed end
points that leaves the total energy E constant, T is the kinetic energy, and ds is the
element of arc length. Recall that, for 2-D motion in the plane, ds* = dr’ + r’d¢*.
In the Euler-Lagrange equation it doesn’t matter what the independent variable is,
so use ¢. Prove that Maupertuis’ Principle gives the same equation for the orbit we

a)

obtained by the u = } transformation. The potential is an arbitrary central potential
Vir).
' ' : . : e b)
»ther ball) A mass m is attached to a wel ghtless string which initially
». The other end of the string is attached to a post of radius a. Neglecting 0

the effect of gravity, suppose the string is set into motion, with an initial velocity
tangential to the string of vo. Find the Lagrangian and the equation of motion for
the length s(t) of the string. Prove that the time it takes for the string to wind up on
the post so that s = 018 turp = Notice that t,p does not depend on the post
radius.

0

5
[val *

Gravity and Planetary Orbits
Problem 18: (Elliptic orbits) For elliptic orbits, prove that the distance from the

ellipse center to the focus of the ellipse (position of the Earth--Sun center of mass) is
ae, where a is the semimajor axis and ¢ is the eccentricity.

Problem 19*: (Weighing the Sun, Earth, and Moon) Kepler's Third Law in its exact
form (4.61) allows you to “weigh” the Sun but not the Earth.

a) Determine the solar mass My from the length of the year and the mean radius of
the Earth’s orbit, neglecting the small eccentricity. Use R = 1.49 x 10% km, and
the gravitational constant G = 6.67 % 1071 N m? kg2

OBLEMS

You can find th
of the Sun to !
junar month (2
orbit (3.8 x 10
density, given
can’t also “we
determined?

Problem 20%: (M
gquation (4.51) fo
potential V) = -
gravitational attrac
B is very small an¢
of the perturbatios
this form could als
uniform density of
{imits on 8?

Problem 21: (Ti

1f the tidal fo
why do we hi
a body of wa
Also, the tim
water is close
Note that in1
the tidal for¢
gravitational
of the Moon.

Problem 22: (b
a) Why does 2

orbit about £

b) Why does it
(This is known ¢

Problem 23: (¢
has the followin
is 0230123 AU
agsuming the ¢
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and compare it
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