Simulations with ANSYS

Sam Posen Cornell University Presented October 13th 2010 at HOM10 In Ithaca, NY

ANSYS

- ANSYS is a finite element analysis package developed for engineering applications
- ANSYS recently acquired several companies and now owns some industry-leading codes (HFSS, ICEM CFD, CVFX, FLUENT)
- Has several types of analysis for different kinds of physics
- Can send results from one analysis to another
- Can couple some analyses together directly

Analysis Types

- Structural
- Thermal
- Fluid dynamics
- Explicit Dynamics
- Magnetostatics
- High Frequency EMAG
- Low Frequency EMAG
- Directly coupled analyses

- Structural
- Thermal
- Fluid dynamics
- Explicit Dynamics
- Magnetostatics
- High Frequency EMAG
- Low Frequency EMAG
- Directly coupled analyses

Capability Comparison

Capability	ANSYS	MWS	ACE3P
Eigenmode Solver	\rightarrow	\rightarrow	\rightarrow
Time Domain (wakefields)		\rightarrow	\rightarrow
S-Parameters	\rightarrow	\rightarrow	\rightarrow
Multipacting			\rightarrow
Coupled EM-Thermal-Structural	\rightarrow		Not Yet
Complex μ and ε	\rightarrow	\rightarrow	\rightarrow
Parallel Computing	\rightarrow	\rightarrow	\rightarrow

Capability Comparison

Capability	ANSYS	MWS	ACE3P	
Eigenmode Solver	\rightarrow	\rightarrow	\rightarrow	
Time Domain (wakefields)		\rightarrow	\bigstar	
S-Parameters	\rightarrow	\star	\rightarrow	
Multipacting			\bigstar	
Coupled EM-Thermal-Structural	\rightarrow		Not Yet	
Complex μ and ϵ	\bigstar	\rightarrow	\rightarrow	
Parallel Computing	\bigstar	\star	\rightarrow	
Excellent for thermal, structural analyses!				
Not capable of introducing particles.				
Not meant for accelerator applications!				

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Excellent support, documentation
- Low cost academic license for universities
- Well benchmarked
- Versatile can easily access data at any selection of nodes, load any elements

- Program issues (issues as of right now—I'll talk about the future)
 - Interface not very user friendly
 - Mesher takes a long time
- Requirements of accelerator community not likely to influence development of code

- ANSYS is switching from its arcane FORTRANbased system to new "Workbench" environment
- Much more user friendly, fast mesher
- Strong CAD model compatibility
- Built-in optimization algorithms
- Current WB 12.0 no HF simulations, but planned for 13.0 (January) or 14.0 (~1 year later)

Workbench Environment

- ERL HOM absorbing tiles had been found cracked and fallen off assembly
- Thought to be thermal expansion mismatch causing stresses when assembly was cooled

• Found small deflection in assembly when cooled

• large concentration of stress at edge of tile, near pivot point

• Came up with series of stress relieving cuts

• Cuts reduced maximum calculated stress by more than 80%

ANSYS Example: ERL HOM Tile

• Simulations show negligible effect on heat transport

Summary

- ANSYS is useful for multiphysics studies
- Not good for particles (wakefields, multipacting)
- Good documentation, support, benchmarks; small \$ for universities, versatile
- Upcoming versions of ANSYS supposed to have user-friendly HF simulation capabilities