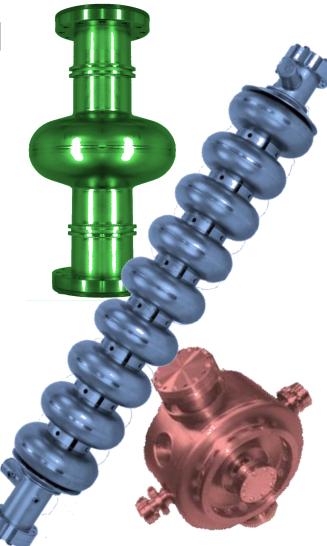


Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

SRF Cavities Beyond Niobium: Potential and Challenges

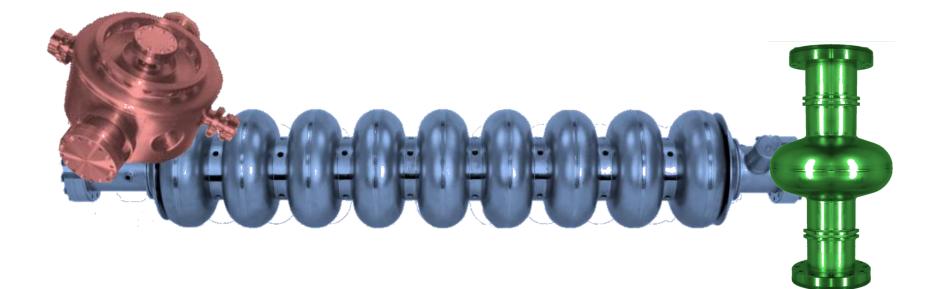
NA PAC'13

Sam Posen and Matthias Liepe Cornell University Wednesday, Oct 2, 2013 NA-PAC '13, Pasadena, California

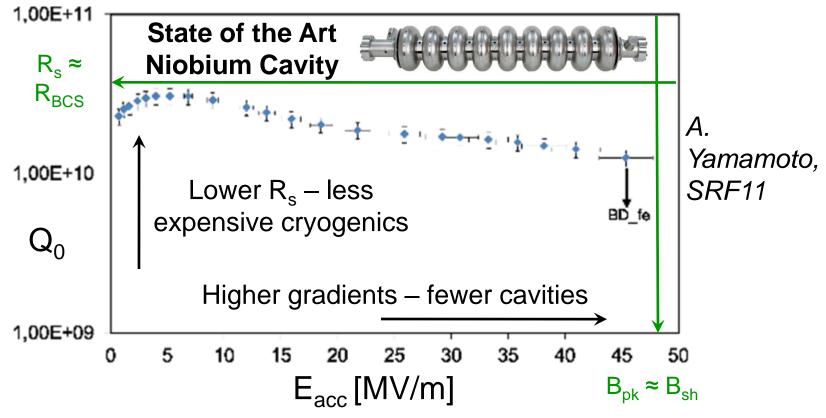

Image from linearcollider.org

Outline

- Motivation Why Look Beyond Niobium?
- Properties to look for in alternative SRF materials
- 3 materials with large amounts of recent development:
 1) Nb₃Sn, 2) MgB₂, 3) NbN
- SIS multilayer films
- Other materials, briefly
- Summary



Why Look at Alternative SRF Materials?

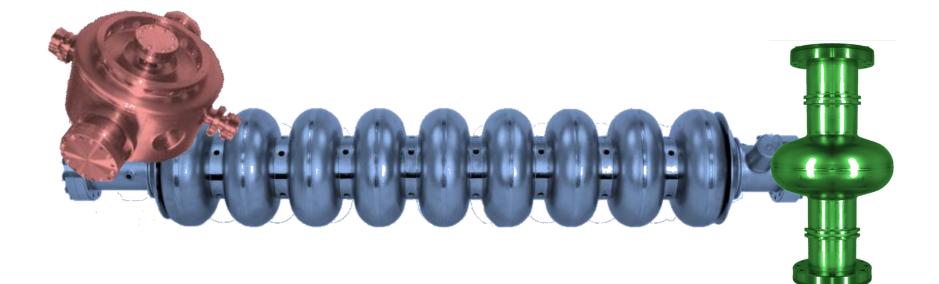


Why Look Beyond Niobium?

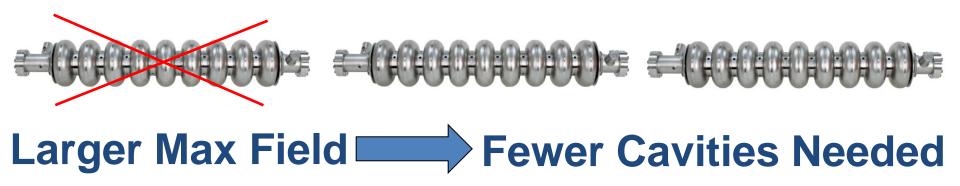
- NAPACI 3. LELGOV
- Two figures of merit: E_{acc} and Q_0 (~ R_s^{-1})
- After years of development, Nb cavities are starting to reach fundamental limits of the material

Why Look Beyond Niobium?

- CW SRF linacs Cost driver: cryogenics
 - Cost optimum for Nb: operate ~ 2 K, where R_s is small
 - Alternative materials can have much smaller R_s at ~2 K: smaller cryo plant and less grid power
 - Materials with higher T_c may allow operation at higher T: LHe at atmospheric pressure or even cold gas
- High energy SRF linacs Cost driver: number of cavities
 - RF critical field fundamentally limits E_{acc}, and therefore sets minimum number of cavities requied to reach a given energy
 - Alternative material with higher critical magnetic field: fewer cavities required to reach same energy


Need long term R&D to realize full potential of new materials, but already a Cornell Nb₃Sn cavity is superior to Nb cavities for some applications. Fast growth over the next years can be expected with continuous R&D. Sam Posen - SRF Cavities Beyond Niobium - NAPAC13

What Properties to Look for in Alternative Materials?



Properties to Look for in Materials: What Gives Large Maximum Field?

- RF limit is superheating field B_{sh}, NOT B_{irr}
 - EXCLUDE vortices, not pin them inside superconductor!
 Normal conducting vortex cores = huge RF dissipation
- Surface defects with size ~ξ can reduce barrier to vortex penetration—need "large enough" ξ
 - Nb has $\xi \sim 20$ nm and it gets very close to B_{sh}
 - New results on Nb₃Sn with $\xi \sim 3$ nm show barrier intact

Properties to Look for in Materials: What Gives Small Surface Resistance?

- Temperature dependent surface resistance from BCS theory: R_{BCS} Vaglio, (1998)
 - Need large T_c, small normal resistivity ρ^{*}
- Temp. independent "residual resistance": R_s(T)
 - $= R_{BCS}(T) + R_{res} not well understood$
 - Strong connections between grains: it is known that weak links can contribute to R_{res}

LHC & SNS cryo equipment. Images from USPAS lectures by Tom Peterson and John Weisend

PAC '13

Smaller Cryogenic Costs

Smaller R_s

Properties to Look for in Materials: Requirements for Cavity Operation

- Ability to conform to complex geometry over large area
- Decent thermal conductivity for cooling to avoid breakdown
- Minimal surface roughness avoid field enhancement
- Cleanliness: Potential field emitting dust? Is there a method to clean surface contaminants?

Experimental Properties of Promising Materials

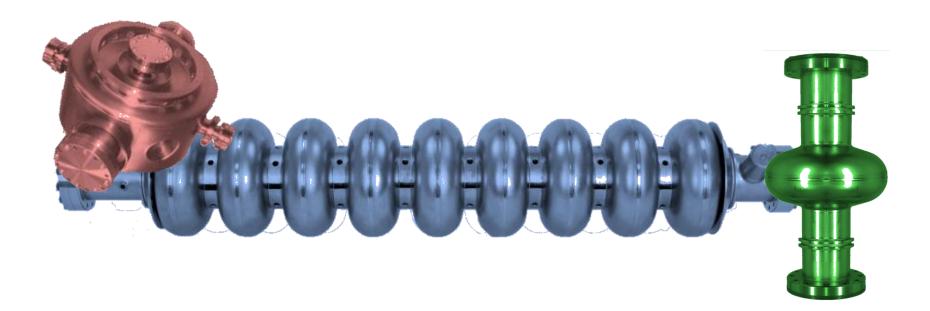
Material	λ(0) [nm]	ξ(0) [nm]	B _{sh} [mT]	Т _с [К]	ρ _n (0) [μΩcm]
Nb	50	22	210	9.2	2
Nb ₃ Sn	111	4.2	410	18	8
MgB ₂	185	4.9	210	40	0.1
NbN	375	2.9	160	16	144

Parameters for: Nb from [1] assuming RRR = 10; Nb₃Sn from [2]; NbN from [3]; MgB₂ from [4] and [5]. B_{sh} for Nb found from equation in [6] and for others calculated from [7]. B_c used to calculated B_{sh} found from [8] eq. 4.20.

- [1] B. Maxfield and W. McLean, Phys. Rev. 139, A1515 (1965).
- [2] M. Hein, High-Temperature Superconductor Thin Films at Microwave Frequencies (Berlin: Springer, 1999).
- [3] D. Oates, et al., Phys. Rev. B 43, 7655 (1991).
- [4] Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001).
- [5] X.X. Xi et al., Physica C, 456, 22-37 (2007).
- [6] A. Dolgert, S. Bartolo, and A. Dorsey, Erratum [Phys. Rev. B 53, 5650 (1996)], Phys. Rev. B 56, 2883 (1997).
- 7 M. Transtrum, G. Catelani, and J. Sethna, Phys. Rev. B 83, 094505 (2011).
- [8] M. Tinkham, Introduction to Superconductivity (New York: Dover, 1996).

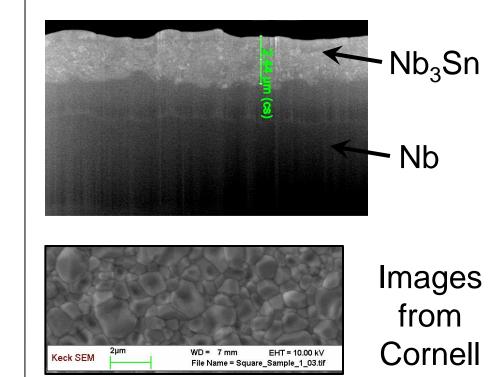
Material parameters vary with fabrication. References were

chosen to try to display realistic properties for polycrystalline films.



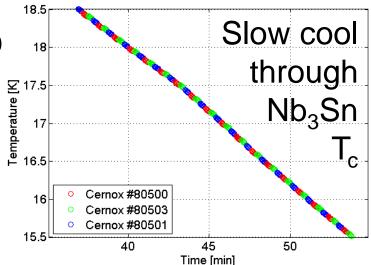
Nb₃Sn

Potential


- Small R_s Small ρ_n , high T_c ~ 18 K (twice Nb)
- Large $B_{sh} \sim 400 \text{ mT}$ (twice Nb)
- Decent ξ ~ 3-4 nm
- Can alloy existing Nb cavities
- Non-reactive

Challenges

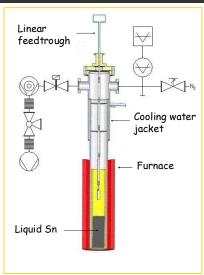
- Material is brittle
- Low thermal conductivity
 - → Films avoid these

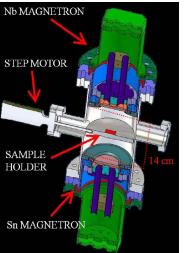


Challenges With Films (Any Material)

- Film/substrate interface can trap flux from thermocurrents if cooled quickly or non-uniformly
 - Require new cooldown after quench to regain small R_s
- Coating only a few µm thick: to clean surface, only light chemistry available
- Large structures: welding coated pieces together difficult, coating entire structure also difficult

Cornell Nb₃Sn Coating[\] Chamber

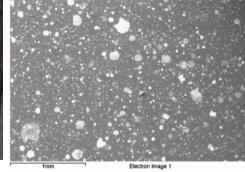

PAC


Preparation Methods

- Liquid Tin Dipping – INFN
- Problems with tin droplets on surface and spurious tin-rich phases

S. Deambrosis et al. (2009)

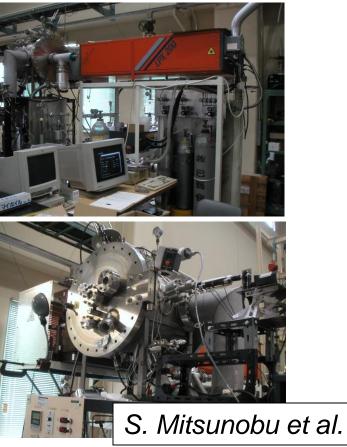
Multilayer Sputtering – INFN


Alternate coatings of Nb and Sn, then anneal
No encouraging RF results so far
A. Rossi et al. (2009)

Cathodic Arc Deposition – Alameda Applied Sciences

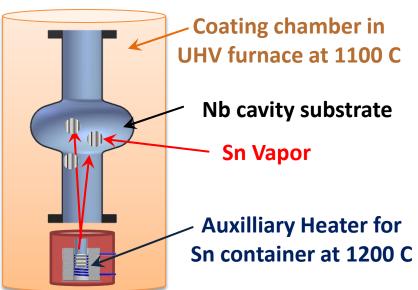
- More energetic ions than sputtering
- Low T_c measured

14


PAC '13

M. Krishnan et al. (2012)

Preparation Methods

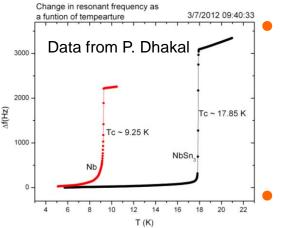

Pulsed Laser Deposition - KEK

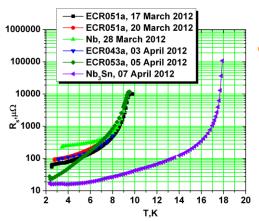
- Studies have started
- Also use PLD for MgB₂

Vapor Diffusion – Cornell and Jefferson Lab

- Pioneering studies 80s-90s at Siemens AG and U. Wuppertal
 In UHV furnace, tin vapor alloys with Nb cavity
- Very promising RF results

Sam Posen - SRF Cavities Beyond Niobium - NAPAC13


PAC '13



Jefferson Lab, Courtesy of G. Eremeev

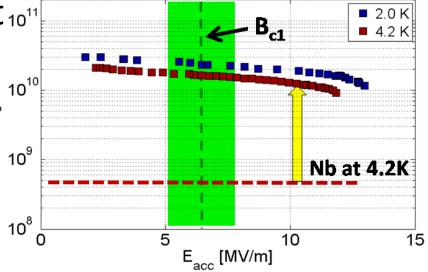
Transition temperature is \sim 17.85 K. The best of three samples shows very smooth surface with no residual tin contamination

Recent measurements of surface resistance of several ECR films, bulk Nb sample, and Nb₃Sn sample as a function of temperature at 7.4 GHz.

Preliminary studies with samples have been done. RF measurements on a sample indicated the transition temperature of 17.9 K and RF surface resistance of about 30 $\mu\Omega$ at 9 K and 7.4 GHz.

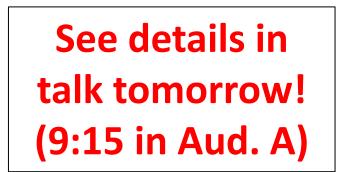
The horizontal insert has been built and inserted in the furnace. The first furnace run has been done at 1200 °C for 2 hours.

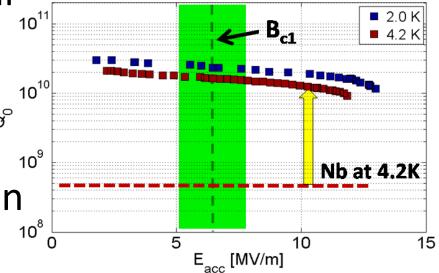
R&D furnace for Nb_3Sn development was ordered in October 2012, delivered in August 2013, and is being commissioned.



Cornell Nb₃Sn Cavity

- Achieved fields ~12 MV/m at 10¹¹
 4.2 K with Q₀ 1x10¹⁰, 20
 times higher than niobium 3^{10¹⁰}
- Breakthrough performance: ¹
 the first alternative material accelerator cavity with significantly smaller R_s than niobium at useful gradients and temperatures
- Performance level already useful for some applications

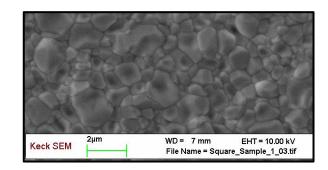




Cornell Nb₃Sn Cavity

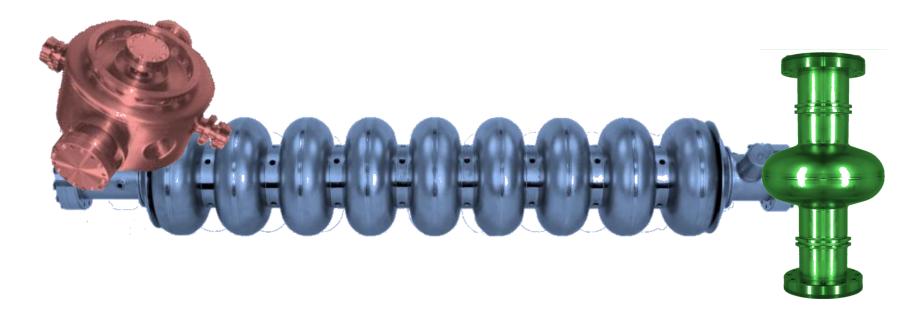
- Proves that even with small ξ of Nb₃Sn (making it more ¹ vulnerable to surface ¹ defects), energy barrier ¹ prevents vortex penetration
- Shows the potential of alternative SRF materials

Sam Posen - SRF Cavities Beyond Niobium - NAPAC13


13

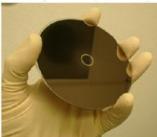
- Cavity fabrication is established Nb₃Sn ready for first applications
- Far smaller R_s than Nb achieved down to 2 K
- Surface mag. fields up to ~55 mT with small R_s
 - Achieved E_{acc} is useful, but far below ultimate limit of material, superheating field
 - Nb: 200 mT, Nb₃Sn ~400 mT

Sam Posen - SRF Cavities Beyond Niobium - NAPAC13

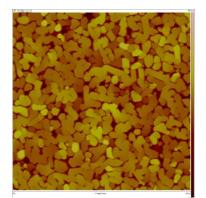


19

MgB_2



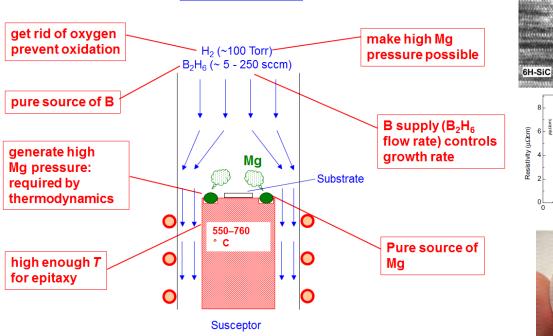
Potential


- Small R_s small ρ_n, very high T_c ~ 40 K (smaller gap dominates R_s, but still good)
- B_{sh} not clear yet, but possible range ~200-600 mT. Need more development of SRF quality MgB₂ films
- Very high T_c raises possibility of operation at high T
- Decent ξ ~ 5 nm

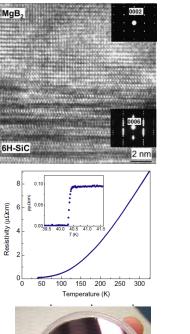
T. Tajima, Los Alamos

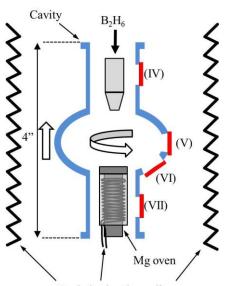
Challenges

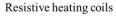
- Mg highly reactive with oxygen: must have very small background during coating
- R_s increase with field predicted for two gap materials, but might be possible to reduce it
- Reacts with water "capping" layer may be required


X. Xi, Temple U.

PAC




Temple University, Courtesy X. Xi


Hybrid Physical-Chemical Vapor Deposition

- HPCVD Process gives excellent T_c
- Working towards cavity coating capability

'13

PAC

Los Alamos, Courtesy of T. Tajima

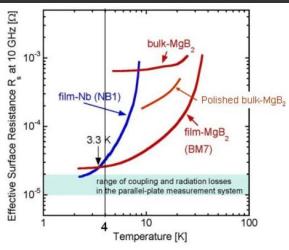


Figure 3: Surface resistance vs. temperature of a 400 nm MgB₂ film coated on a sapphire substrate. Bulk samples and Nb data are shown for comparison. [6]

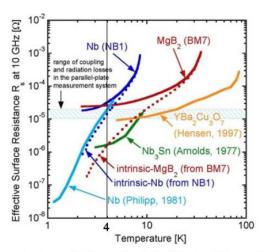


Figure 4: Prediction of intrinsic (BCS) surface resistance (dotted line) from experimental data. [6]

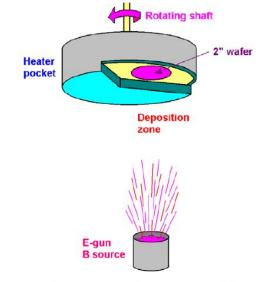
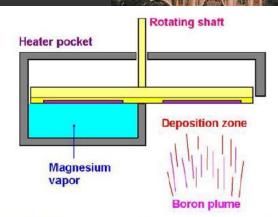



Figure 1: MgB₂ coating system at STI. [5]

- R_s lower than Nb at 10 GHz for T > \sim 4 K
- Little increase in R_s \bullet with B up to 12 mT

13

PA

Figure 2: Cross section of the deposition chamber. [5]

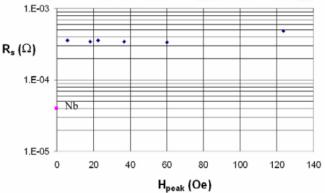
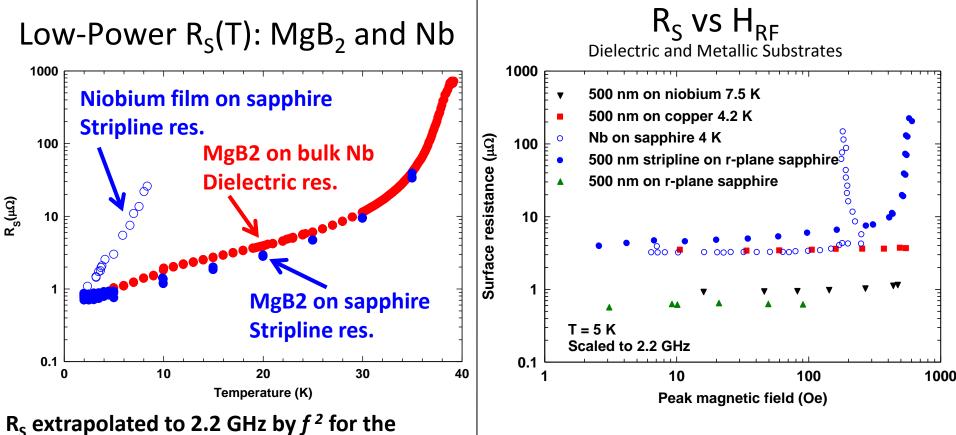


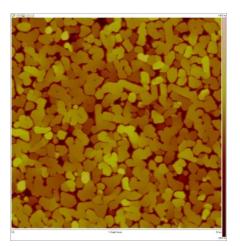
Figure 6: R_s of the Nb TE₀₁₁ mode cavity with a MgB₂ sample at the center of the bottom plate, as a function of the peak magnetic field on the sample. The data was converted to 10 GHz using an f^2 law.

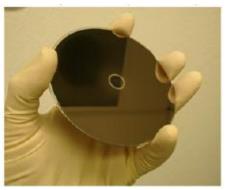
*MgB*₂ films produced at STI (Superconducting Technologies Inc. – B. Moeckly et al) by reactive co-evaporation


tor-based Scien

MIT Lincoln Labs, Courtesy of D. Oates

MgB₂ films produced by B. Moeckly at STI (Superconducting Technologies Inc.) by reactive coevaporation


dielectric-resonator data

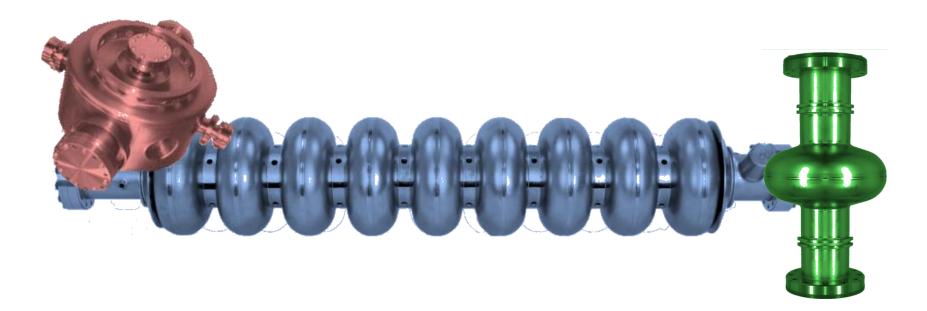

Current Status of MgB₂

- Several sample studies; cavity fabrication is coming soon
- Smaller R_s than Nb achieved at high temperature and frequency
 - Need to show small R_{res} is possible
- Only relatively small gradients measured so far, as no cavities built yet
 - Need to see if two-gap nature increases R_s at high gradients

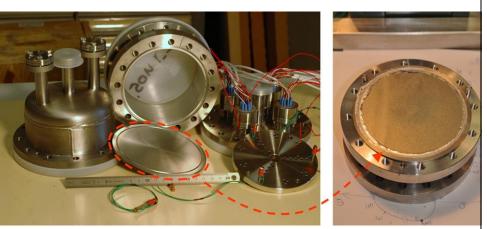
13

PAC

Color Code Goal Achieved Goal in Progress Fundamental Problem

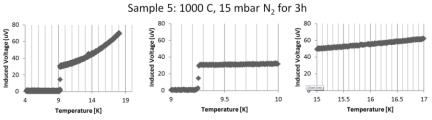


NbN



NbN

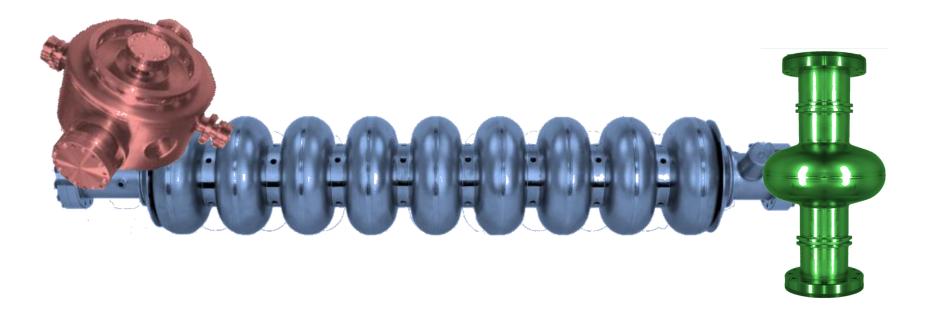
Potential


- Small R_s high T_c ~ 15 -17 K
- B_{sh} okay ~ 150-200 mT
- Decent $\xi \sim 3 \text{ nm}$
- Might be possible to treat large Nb cavities with N_2 in furnace

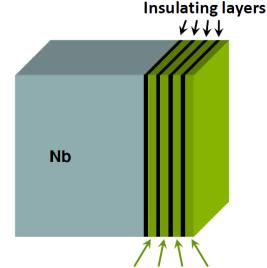
Sputtered NbN, *C. Anoine et al. (2013)* APL 102603

Challenges

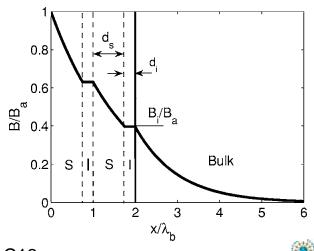
- Complex phase diagram very difficult to achieve correct phase for furnace treatment
- \bullet Tests show large $\mathsf{R}_{\mathsf{res}}$
- Recently R_s reduction in Nb measured after N_2 furnace treatment—speculated cause was superconducting NbN growth, but sample T_c revealed that another mechanism must have been responsible



Multilayers



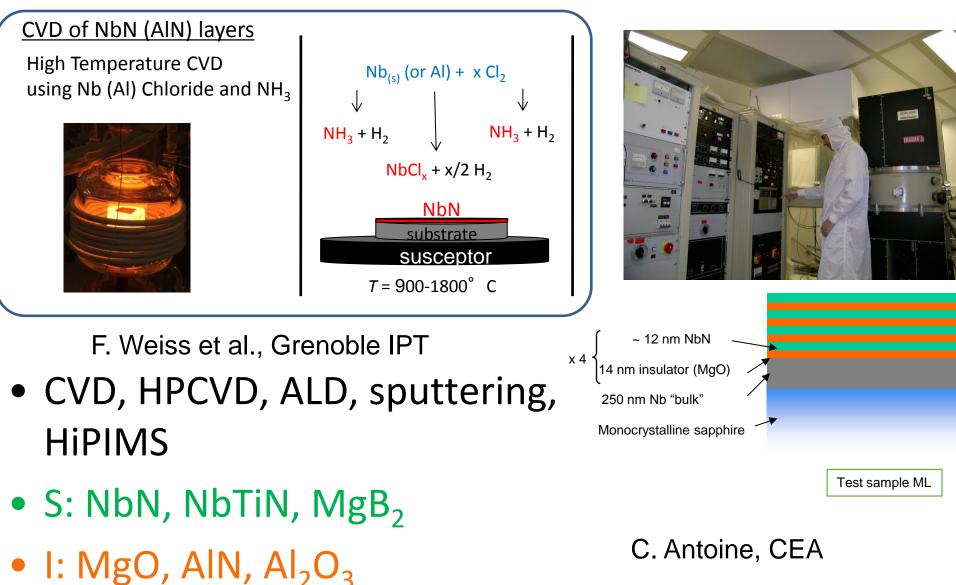
Multilayers



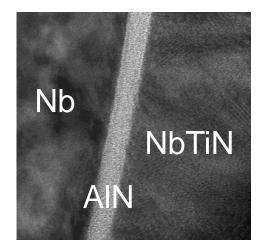
- A. Gurevich proposal: don't use bulk films—use alternating layers of thin superconductor and insulator on top of bulk superconductor, "SIS multilayers"
- Enhancement of B_{c1} (onset of metastable state) in thin films avoids problem of vortex penetration at small defects

A. Gurevich, APL 012511 (2006)

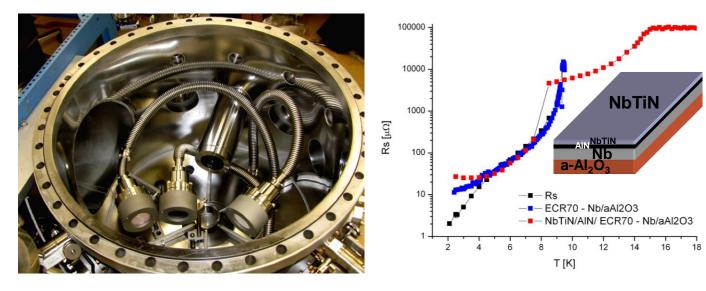
Thin layers of alternative superconductor



Fabrication



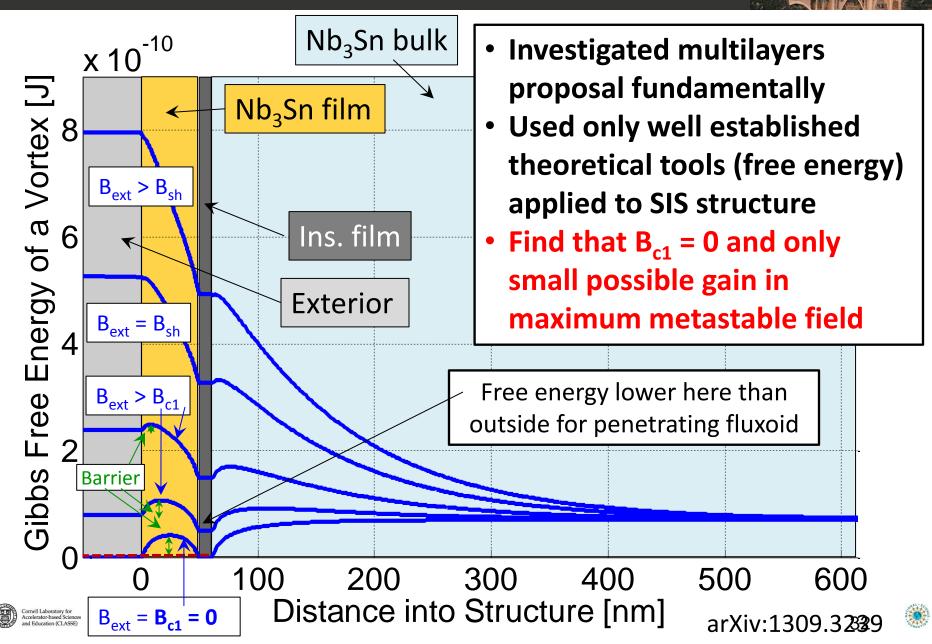
NbTiN


- Addition of Ti can increase NbN resitivity, thermodynamic stability
- JLab starting to use this material for multilayers: T_c and R_s measured

'13

PAC

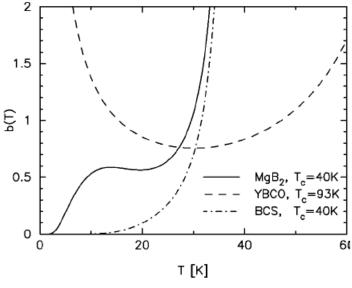
A.M. Valente-Feliciano, Jefferson Lab



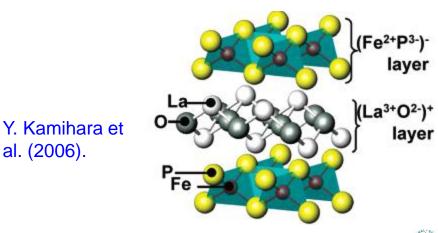
New Theory from Cornell

13

PAC



- YBCO (T_c ~ 95 K) nonlinear increase in R_s with field, Large R_{res}
- Oxypnictides (T_c ~ 20-60 K)


 difficult structure, but
 exciting possibility: more
 research needed
- V₃Si, Mo₃Re, Nb₃GaAl (T_c ~ 10-20 K) – further investigation needed

NAC PAC'13

Nonlinear Coefficient

Dahm & Scalapino, APL 85, 4436 (2004)

Summary

- Alternative SRF materials offer lower R_s, higher T_c, higher B_{sh} than niobium → more efficient cavities (factor of 10-100?), higher gradients (factor of 2?)
- Breakthrough Nb₃Sn cavity: at 4.2 K and usable gradients, Q₀ is 20 times higher than Nb (details tomorrow morning)
- MgB₂ looks very promising first cavities soon!

Acknowledgements

- I would like to extend sincere thanks to the following contributors:
 - Grigory Eremeev, JLab
 - Anne-Marie Valente-Feliciano, JLab
 - Enzo Palmieri, INFN
 - Xiaoxing Xi, Temple U.
 - Tsuyoshi Tajima, Los Alamos
 - Shinji Mitsunobu, KEK
 - Claire Antoine, CEA
 - Rosa Lukaszew, William and Mary
 - Daniel Oates, MIT Lincoln Labs
 - Mahadevan Krishnan, Alameda Applied Sciences Corp.
 - François Weiss, Institut Polytechnique de Grenoble

