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Tokamak 
• Confines plasma using magnetic fields 

• Induce plasma current for heating until 

resistance becomes very low 

• Injected energetic neutral fuel particles 

heat by collisions, ionize, then join plasma 

• STOR-U, University of Saskatchewan 

 

Image 

modified 

from [1] 



Neutral Beam Injector Subsystems 
• Ion source: high current, hydrogen ions 

• Accelerator: beam energy, focusing 

• Neutralizer: charge exchange 

• Residual ion dump, then drift to plasma 

Image modified from [2] 



NBI Port Size 
• Determined max port dimension 

• Assumed maximum toroidal field coil size 

• Tangential injection 

16 cm MAX 



Beam Power 

• P = I2R, compare PNBI to I2 of previous tokamaks 

• For STOR-U, I = 0.4 kA  ~2 MW NBI 

Data from [2]. 



Beam Energy 

 

Energies from 

[3][4][5][6][7][8][9][10][11][12][13][14] 

• Beam must penetrate plasma, but not pass through 

• For STOR-U, Ti = 3.5 keV  ~20-100 keV NBI 

Ion temperatures from 

[15][16][17][18][19][20] 



Calculating Neutral Fraction 
• Cross 

sections 
tabulated by 
ORNL [21] 

• N neutral gas 
density 

• Initial N 
estimate  
from tokamak 
pressure [22] 

• z distance 

• n0 (0) = n-(0) 
= 0 

• n+(0)  
arbitrary 

 



 

(cm2) 



• neutral 

fraction ↓ 

with E ↑ 

• n- small 

• Not 

reached 

for long 

distance 

Equilibrium 

properties: 

20 keV 40 keV 

100 keV 70 keV 



Effect of Increasing Pressure 
• Distance to achieve equilibrium 

proportional to N 

• i.e. decrease neutralizer length by 

increasing pressure 

• If pressure too high, “stripping” occurs 

• Restricts pressure below 4x10-3 torr [23] 
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Effect of Increasing Energy 
• Equilibrium fraction of neutrals decreases 

• Must dump these residual ions after 

neutralizer  possible high power flux 

• Required source current for 2 MW beam 

power dependent on energy 

0

20

40

60

80

100

0 50 100 150

Beam Energy (keV)

S
o

u
rc

e
 C

u
rr

e
n

t 
(A

)

0

2

4

6

8

10

12

14

R
ID

 P
o

w
e

r 
(M

W
)

RID Power Input

Ion Source Current

Steady State Percent RID Power and Required Source Current 



Ion Source Choice 

• Comparison 
included 
consideration of 

• Uniformity: optics 
optimized for 
specific current 
density 

• Monatomic fraction: 
may lead to ions 
with Ebeam/2, Ebeam/3 

• Noise: fluctuations 
in current 

Image 

modified 

from [25] 



Magnetic Multipole Source 

• Filaments or 

RF used to 

generate 

plasma 

• Quiescent, 

uniform 

plasma with 

high 

monatomic 

fraction 

Permanent magnets 

Image 

modified 

from [23] 



Modified DuoPIGatron 
• Uses magnetic cusps, 

but different method of 
plasma generation 

• Performance not as 
good as multipole under 
aforementioned criteria, 
but satisfactory for 
STOR-U 

• Formerly widely 
popular, so may be 
possible to obtain 
disused source Image 

modified 

from [26] 



Accelerator 
• 3-grid design chosen with beamlets 

• Grids will be curved to provide focusing 

• Comparison done to previous comparable 
NBI accelerators to estimate divergence 

• Maximum transmission distance calculated 



STOR-U Team Parameters 
• Parameters selected compared to those 

chosen by STOR-U team 

• 3 MW close to 2 MW estimate 

• 40 keV energy within 20-100 keV range 

• Larger source required than predicted 



Rejected Solutions 
• Deuterium produces radioactive tritium 

• Negative ion sources are very complicated 

and produce low current densities 

100 keV H+ source H- source 



Summary 

• NBI to inject 2 MW H+ at 20-100 keV 

• Require source that generates ~60 A 

• Lower current keeps beam dump load low 

• Magnetic multipole has best performance 

• Should seek disused modified 

DuoPIGatron sources 

• Acceleration provided by 3 curved grids 

• Estimates within an order of magnitude of 

STOR-U team’s of 3 MW and 40 keV 
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Effect of Increasing Energy 

• This assumes a 20% power loss along 

beamline (other than residual ion dump) 

• Estimate based on beamline losses in 

previous comparable NBIs 

• Example from PDX shown 
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modified 

from [24] 
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