Design of a Neutral Beam Injection System for STOR-U

Presented by Sam Posen On June 7, 2009 At the CAP Congress in Moncton

Division of Plasma Physics

Project supported by NSERC and completed partially in fulfillment of the requirements of the Engineering Physics Undergraduate Program at Queen's University

Tokamak

- Confines plasma using magnetic fields
- Induce plasma current for heating until resistance becomes very low
- Injected energetic neutral fuel particles heat by collisions, ionize, then join plasma
- STOR-U, University of Saskatchewan

Image modified from [1]

Neutral Beam Injector Subsystems

- Ion source: high current, hydrogen ions
- Accelerator: beam energy, focusing
- Neutralizer: charge exchange
- Residual ion dump, then drift to plasma

NBI Port Size

- Determined max port dimension
- Assumed maximum toroidal field coil size
- Tangential injection

Beam Power

- $P = I^2 R$, compare P_{NBI} to I^2 of previous tokamaks
- For STOR-U, I = 0.4 kA \rightarrow ~2 MW NBI

Beam Energy

- Beam must penetrate plasma, but not pass through
- For STOR-U, $T_i = 3.5 \text{ keV} \rightarrow \sim 20-100 \text{ keV} \text{ NBI}$

Calculating Neutral Fraction

- $\underline{H}^- + \underline{H}_2 \rightarrow \underline{H}^0 + \underline{e} + \underline{H}_2$ $\sigma_{\overline{1}0}$: $H^- + H_2 \rightarrow H^+ + 2e + H_2$ $\sigma_{\overline{1}1}$: $H^0 + H_2 \rightarrow H^+ + e + H_2$ σ_{01} : $H^0 + H_2 \rightarrow \underline{H}^0 + H_2^+$ $\sigma_{0\overline{1}}$: $\underline{\mathrm{H}}^{+} + \mathrm{H}_{2} \rightarrow \underline{\mathrm{H}}^{0} + \mathrm{H}_{2}^{+}$ σ_{10} : $\mathrm{H^+} + \mathrm{H_2} \rightarrow \mathrm{H^-} + 2\mathrm{H^+}$ $\sigma_{1\overline{1}}$: $\frac{\mathrm{d}n^-}{\mathrm{d}z} = N(z)[n^0\sigma_{0\overline{1}} + n^+\sigma_{1\overline{1}} - n^-(\sigma_{\overline{1}0} + \sigma_{\overline{1}1})] \, .$ $\frac{\mathrm{d}n^0}{\mathrm{d}z} = N(z)[n^-\sigma_{\overline{1}0} + n^+\sigma_{10} - n^0(\sigma_{0\overline{1}} + \sigma_{01})]$ $\mathrm{d}n^+$ $= N(z)[n^{-}\sigma_{\overline{1}1} + n^{0}\sigma_{01} - n^{+}(\sigma_{1\overline{1}} + \sigma_{10})]$ $\frac{\mathrm{d}z}{\mathrm{d}z}$
- Cross sections tabulated by ORNL [21]
 - N neutral gas density
 - Initial N estimate from tokamak pressure [22]
 - z distance
 - $n^{0}(0) = n^{-}(0)$ = 0
 - n⁺(0) arbitrary

 $\sigma_{\overline{10}}: \underline{\mathrm{H}}^- + \mathrm{H}_2 \to \underline{\mathrm{H}}^0 + \mathrm{e} + \mathrm{H}_2$ $\sigma_{\overline{1}1}: \underline{\mathrm{H}}^- + \mathrm{H}_2 \rightarrow \underline{\mathrm{H}}^+ + 2\mathrm{e} + \mathrm{H}_2$ $H^0 + H_2 \rightarrow H^+ + e + H_2$ σ_{01} : $\sigma_{0\overline{1}}: \underline{\mathrm{H}}^{0} + \mathrm{H}_{2} \to \underline{\mathrm{H}}^{0} + \mathrm{H}_{2}^{+}$ $\sigma_{10}: \underline{\mathrm{H}}^{+} + \mathrm{H}_{2} \to \underline{\mathrm{H}}^{0} + \mathrm{H}_{2}^{+}$ $\sigma_{1\overline{1}}: \underline{H}^+ + \underline{H}_2 \rightarrow \underline{H}^- + 2\underline{H}^+$

(cm²)	20 keV	40 keV	$70 \mathrm{keV}$	100 keV
$\sigma_{\overline{1}0}$	$8.36 \mathrm{x} 10^{-16}$	$6.33 \mathrm{x} 10^{-16}$	$4.82 \mathrm{x} 10^{-16}$	$3.95 \mathrm{x} 10^{-16}$
$\sigma_{\overline{1}1}$	$4.11 \mathrm{x} 10^{-17}$	$3.97 \mathrm{x} 10^{-17}$	$3.36 \mathrm{x} 10^{-17}$	$2.84 \mathrm{x} 10^{-17}$
σ_{01}	$1.36 \mathrm{x} 10^{-16}$	$1.54 \mathrm{x} 10^{-16}$	$1.36 \mathrm{x} 10^{-16}$	$1.10 \mathrm{x} 10^{-16}$
$\sigma_{0\overline{1}}$	$1.91 \mathrm{x} 10^{-18}$	$9.93 \text{x} 10^{-18}$	$4.07 \mathrm{x} 10^{-18}$	$1.68 \mathrm{x} 10^{-18}$
σ_{10}	$5.79 \mathrm{x} 10^{-16}$	$2.50 \mathrm{x} 10^{-16}$	$7.78 \mathrm{x} 10^{-17}$	$2.91 \mathrm{x} 10^{-17}$
$\sigma_{1\overline{1}}$	$8.89 \mathrm{x} 10^{-18}$	$2.21 \mathrm{x} 10^{-18}$	$2.24 \mathrm{x} 10^{-19}$	$3.15 \mathrm{x} 10^{-20}$

Equilibrium properties:

- neutral fraction ↓
 with E ↑
- *n*⁻ small
- Not reached for long distance

0

Effect of Increasing Pressure

- Distance to achieve equilibrium proportional to N
- i.e. decrease neutralizer length by increasing pressure
- If pressure too high, "stripping" occurs
- Restricts pressure below 4x10⁻³ torr [23]

Energy (keV)	Distance for 90% of steady state value (m)
20	0.3
40	0.5
70	0.9
100	1.4

Effect of Increasing Energy

- Equilibrium fraction of neutrals decreases
- Must dump these residual ions after neutralizer → possible high power flux
- Required source current for 2 MW beam power dependent on energy

Ion Source Choice

- Comparison included consideration of
- Uniformity: optics optimized for specific current density
- Monatomic fraction: may lead to ions with E_{beam}/2, E_{beam}/3
- Noise: fluctuations
 in current

Image modified from [25]

Magnetic Multipole Source

- Filaments or RF used to generate plasma
- Quiescent, uniform
 plasma with
 high
 monatomic
 fraction

Image modified from [23]

Modified DuoPIGatron

- Uses magnetic cusps, but different method of plasma generation
- Performance not as good as multipole under aforementioned criteria, but satisfactory for STOR-U
- Formerly widely popular, so may be possible to obtain disused source

Accelerator

- 3-grid design chosen with beamlets
- Grids will be curved to provide focusing
- Comparison done to previous comparable NBI accelerators to estimate divergence
- Maximum transmission distance calculated

Source and aperture type	Tokamaks applied to	Max. design current (A)	Accel dimensions (cm)	Size of holes/slots	Number of holes/slots	Beam divergence (degrees)	Maximum Transmission Distance (m)
Multipole with holes	JET, MAST	60	16x45 → 30 diam	1.2-cm diam	262	0.7	6.1 m
DuoPIGatron with holes	ISX-B, PLT	60	22 diam	0.38 cm diam	1799	1.5	3.0 m
Multipole with slots	DIII-D, TFTR	83	12x48	0.6x12 cm	55	0.4 to slots, 0.7 <u> </u>	6.3 m
DuoPIGatron with slots	TFTR, DIII-D	60	13x43	0.6x12 cm	55	0.3 to slots, 0.7-1.2	4.6 m

STOR-U Team Parameters

- Parameters selected compared to those chosen by STOR-U team
- 3 MW close to 2 MW estimate
- 40 keV energy within 20-100 keV range
- Larger source required than predicted

Rejected Solutions

- Deuterium produces radioactive tritium
- Negative ion sources are very complicated and produce low current densities

Summary

- NBI to inject 2 MW H⁺ at 20-100 keV
- Require source that generates ~60 A
- Lower current keeps beam dump load low
- Magnetic multipole has best performance
- Should seek disused modified DuoPIGatron sources
- Acceleration provided by 3 curved grids
- Estimates within an order of magnitude of STOR-U team's of 3 MW and 40 keV

References I

- [1] Ors Benedek. *schema_magnets.jpg*. European Fusion Development Agreement. Retrieved on 15 February 2009 from http://www.efda.org/usercases/students and educators.htm.
- [2] J. Wesson. *Tokamaks*. 3rd Edition, pp. 254 and 590-591, New York: Oxford University Press, 2004.
- [3] L. Grisham et al. "The neutral beam heating system for the tokamak fusion test reactor," *Nucl. Inst. and Meth. in Phys. Res. B.* vol 10-11, pp. 478-482, 1985.
- [4] M. Kuriyama et al. "Development of negative-ion based NBI system for JT-60," *Journal of Nucl. Sci. and Tech.*, vol. 35, no. 11, pp. 739-749, 1998.
- [5] M. Keilhacker et al. "Connement in ADEX with neutral beam heating and RF heating," *Plasma Phys. and Contr. Fus.*, vol. 28, no. 1A, pp. 29-41, 1986.
- [6] R. King, C. Challis, and D. Ciric. "A review of JET neutral beam system performance 1994-2003," *Fus. Eng. Des.*, vol. 74, pp. 455-459, 2005.
- [7] H. Eubank et al. "Neutral-beam-heating results from the Princeton Large Torus," *Phys. Rev. Lett.*, vol 43, no. 4, 1979.
- [8] P. Johnson et al. "Results from the bundle divertor experiment on DITE with neutral beam heating," *Journal of Nucl. Mat.*, vol. 121, pp. 210-221, 1984.
- [9] Y. Takeiri et al. "Construction of negative-ion-based NBI system in Large Helical Device," *Symposium on Fusion Engineering*, no. 17, pp. 409-412, 1997.
- [10] C. Fuentes et al. "Neutral beam injection optimization at TJ-II," *Fus. Eng. Des.*, vol. 74, pp. 249-253, 2005.
- [11] S. Mattoo et al. "Engineering design of the steady state neutral beam injector for SST-1," *Fus. Eng. Des.*, vol. 56-57, pp 685-691, 2001.
- [12] S. Jee et al. "MAST neutral beam long pulse upgrade," *Fus. Eng. Des.*, vol. 74, pp. 403-407, 2005.
- [13] J. Kamperschroer et al. "Neutral beam injection for the Doublet III Device," *IEEE Transactions on Plasma Sci.*, vol. PS-7, no. 3, 1979.
- [14] "Power transmission and shine-through measurements during NBI experiments in TFR by calorimetry inside the torus," *Plasma Phys. and Contr. Fus.*, vol. 29., no 1, pp. 37-42, 1986.
- [15] D. Campbell. "Magnetic connement fusion: tokamak," *Landolt-Brnstein Group VIII Advanced Materials and Technologies*, vol. 3B, pp. 369-417, Berlin: Springer, 2005.

References II

- [16] J. Paul et al. "The DITE tokamak experiment," *Philosophical Transactions of the Royal Society of London*, series A, vol. 300, no. 1456, pp. 535-545, 1981.
- [17] Y. Takeiri et al. "Achievement of a high ion temperature with Ne- and Ar-seeded discharges by high-power NBI heating in LHD," *EPS Conference on Contr. Fusion and Plasma Phys.*, no. 30, vol. 27A, 2003.
- [18] B. Lloyd et al. "Overview of recent results on MAST," *Nucl. Fus.*, vol. 43, pp. 1665-1673, 2003.
- [19] E. Ascasibar et al. "Overview of TJ-II exible heliac results," *Fus. Eng. Des.*, vol. 56-57, pp 145-154, 2001.
- [20] M. Jana and S. Mattoo. "Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector," *Fus. Eng. Des.*, vol. 83, pp 649-654, 2008.
- [21] C. Barnett (ed.). *Atomic Data for Fusion, vol. 1*, Oak Ridge National Laboratory, 1990.
- [22] Personal communication with Professor Jordan Morelli, Queens University.
- [23] R. Hemsworth and T. Inoue. "Positive and negative ion sources for magnetic fusion," *IEEE Transactions on Plasma Science*, vol. 33, no. 6, pp. 1799-1811, 2005.
- [24] W. Gardner et al. "Properties of an intense 50-kV neutral-beam injection system," *Rev. Sci. Instrum.*, vol. 53(4), pp. 424-431, 1982.
- [25] I. Brown (ed.). *The Physics and Technology of Ion Sources*, 2nd edition, pp. 267, 359, and 341-369, Weinheim: Wiley, 2004.
- [26] C. Tsai et al. "DC plasma generator development for neutral-beam injectors," Technical report from DOE/IAEA/ORNL conference in Gatlinburg, TN, USA, 19 Oct 1981, Oak Ridge National Laboratory, CONF-8110118-5.

Effect of Increasing Energy

- This assumes a 20% power loss along beamline (other than residual ion dump)
- Estimate based on beamline losses in previous comparable NBIs
- Example from PDX shown

Image modified from [24]

