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* Predicted-H _fortargexissma

— Improved theory predicts very large H,,

* Gap closes below H,,, leading to high R,
— Will discuss this today

* Low ¢ makes Nb,Sn sensitive to small flaws like
grain boundaries

— Future study

@ S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for Nb;Sn



PHYSICAL REVIEW B 85, 054513 (2012)

Effect of impurities on the superheating field of type-1I superconductors

Solved Eilenburger’s anomalous Greens
functions in high-« limit to calculate DOS

DOS gives quasiparticle gap €,(H, dirt)

— Reminder: €, differs from A (the pairing potential)
as it includes the effect of current

— Lin and Gurevich suggest that R, o. exp(-£,/kT)

Reassuring: £,20 at 97% of H,;,, and dirt
pushes gap closing above H_,

Today: Careful extraction of R (H, dirt) from
Lin/Gurevich theory for Nb,Sn
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Numerical Solutions

* Reproduce calculations of quasiparticle
spectrum through numerical solution of
Eilenburger equations in high «, low T limit
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* Use SRIMP to calculate R.(T, gap,
* Assumes ~1/2 of cavity surface is at H

Qg cs(H) with Gap Closing

(approximation for an ILC cavity)

* Gives an overestimate of R,

T(;/ fl E) A; RRR)

surface,max

Nb,Sn, T =4.2 K, ILC Cavity

Nb.Sn, T =2 K, ILC Cavit
1016 — 3 y 1012
O R T
S ~_ 10— ~~
12 o~ 10 T - _
. —
C 10 constant gap, a.=3.6 | < 10° | constant gap, a=3.6
closing gap, a=0.01 closing gap, o.=0.01 | -
8 _ .
10" | closing gap, 0=3.6 closing gap, 0.=3.6 |
closing gap, =20 6 closing gap, =20 T
10° * * 10 * *
0 100 200 300 400 0 100 200 300 400
] H[mT] ] H [MT]
0 25 50 75 100 0 25 50 75 100
E... [MV/m] E... [MV/m]
@ S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for Nb;Sn



* Given R,, how high in field can we get to?
* 3 mm thick Nb

e 2 Kbath or 4.2 K bath

— Cooling by Kapitza resistance or nucleate pool
boiling
e Solve 1-D thermal conduction equation with
temperature dependent thermal conductivity
— Find T of inner surface
— Find max H before thermal runaway occurs
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1-D Heat Conduction Model

Cavity Vacuum Niobium

Helium Bath

Heat flux = q”
=~ R,H?
2

R, from
SRIMP given
T, T,gap,A,

) o

¢, RRR, f

P Nb;Sn, 3 mm

wm A

Temperature-dependent
thermal conductivity = k(T)

N

Bath
temperature = T,

Kapitza

conductance=h
(for T=4.2 K, use
nucleate pool boiling
expression)
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Example: T, .., =2 K, gap = 0.4A,,, h = 7500 W/m?2K
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(€,) for NbsSn, H, (0) = 400 mT,

max,stable

Tyn = 2 K — Kapitza resistance regime:

rno__ n _ 2
q'' = hAT, h depends on surface preparation, 7}, q" = CAT", C~ 1 W/em* up to total

q” ~ 1 W/cm?, where vapor film forms
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Conclusions

* Good range of operation for Nb,;Sn even with
exponential increase in R, with B caused by
closing quasiparticle gap

* Potential for high Q performance at moderate-
to-high fields not compromised by this theory

— Predicts Ry ~ 3 nQ at 300 mT, 1.3 GHz, 2K

* Predicts thermal instability onset at ~290 mT
at 2 K, 180 mT at 4.2 K
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— http://www.Ins.cornell.edu/~liepe/webpage/rese
archsrimp.html
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