

The Closing Quasiparticle Spectral Gap and its Implications for Nb₃Sn

S. Posen, M. Liepe, J. Sethna Cornell University

SRF Materials Workshop 2012, Jefferson Lab

• Predicted H_{sh} for large κ is small

- Improved theory predicts very large H_{sh}

- Gap closes below H_{sh}, leading to high R_s
 Will discuss this today
- Low ξ makes $\rm Nb_3Sn$ sensitive to small flaws like grain boundaries
 - Future study

	Nb	Nb ₃ Sn
К	1.4	~30
<i>H_{sh}</i> (0)	200 mT	~400 mT
ξ	~60 nm	~3-6 nm

S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for $\rm Nb_3Sn$

PHYSICAL REVIEW B 85, 054513 (2012)

Effect of impurities on the superheating field of type-II superconductors

- Solved Eilenburger's anomalous Greens functions in high-κ limit to calculate DOS
- DOS gives quasiparticle gap $\varepsilon_g(H, dirt)$
 - Reminder: ε_g differs from Δ (the pairing potential) as it includes the effect of current

– Lin and Gurevich suggest that $R_s \alpha \exp(-\varepsilon_g/kT)$

- Reassuring: $\varepsilon_g \rightarrow 0$ at 97% of H_{sh} , and dirt pushes gap closing above H_{sh}
- Today: Careful extraction of R_s(H, dirt) from Lin/Gurevich theory for Nb₃Sn

 Reproduce calculations of quasiparticle spectrum through numerical solution of Eilenburger equations in high κ, low T limit

$$\left(\frac{\Delta\sin X\tau_{-}}{uv\tau_{-}-X}\right)^{2} + \left(\frac{\omega_{n}\tau_{+}}{uv\tau_{+}\cot X-1}\right)^{2} = \frac{1}{4}. \qquad \ln\frac{T}{T_{c}} + 2\pi T\sum_{n=0}^{\infty}\left\{\frac{1}{\omega_{n}} - \frac{2X\tau_{-}}{uv\tau_{-}-X}\right\} = 0, \qquad \nu(\epsilon) = \operatorname{Im}\frac{2uv\tau^{2}\epsilon}{uv\tau_{-}-\tan\chi},$$

S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for Nb_3Sn

ε_q as a Function of Field

S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for $\rm Nb_3Sn$

- Use SRIMP to calculate $R_s(T, \text{gap}, T_c, f, \xi, \lambda, \text{RRR})$
- Assumes ~1/2 of cavity surface is at H_{surface,max} (approximation for an ILC cavity)
- Gives an overestimate of R_s

S. Posen - The Closing Quasiparticle Spectral Gap and its Implications for Nb_3Sn

- Given *R_s*, how high in field can we get to?
- 3 mm thick Nb
- 2 K bath or 4.2 K bath
 - Cooling by Kapitza resistance or nucleate pool boiling
- Solve 1-D thermal conduction equation with temperature dependent thermal conductivity
 - Find T of inner surface
 - Find max H before thermal runaway occurs

Example: T_{bath} = 2 K, gap = 0.4 Δ_{00} , h = 7500 W/m²K

$H_{max,stable}(\varepsilon_g)$ for Nb₃Sn, H_{sh}(0) = 400 mT, RRR=0.5, f=1.3 GHz

- Good range of operation for Nb₃Sn even with exponential increase in R_s with B caused by closing quasiparticle gap
- Potential for high Q performance at moderateto-high fields not compromised by this theory

– Predicts $R_{BCS} \sim 3 n\Omega$ at 300 mT, 1.3 GHz, 2K

 Predicts thermal instability onset at ~290 mT at 2 K, ~180 mT at 4.2 K

- Special thanks to J. Halbritter for development of the SRIMP code
- Special thanks to N. Valles for developing MATLAB SRIMP code and for help with complex numerical solvers
 - There is now a website where you can run SRIMP!
 - <u>http://www.lns.cornell.edu/~liepe/webpage/rese</u> <u>archsrimp.html</u>

