

Nb₃Sn – Present Status and Potential as an Alternative SRF Material

S. Posen and M. Liepe, Cornell University LINAC 2014 – Geneva, Switzerland – September 2, 2014

Low DF, high energy

 Energy gradient in state of the art Nb cavities limited by B_{sh} (ultimate limit)

Limit: **B**_{sh}

ILC: 16,000 cavities in 31 km linac

Image from Rei Hori, linearcollider.org

High DF / CW

- Large dynamic load
- Cost optimum gradient relatively low: P_{diss} ~ E_{acc}²/Q₀

Cryoplants for large linacs cost ~\$100 million and require MW of power

Image from D. Delikaris, Cryogenics at CERN, 2010

	Niobium
Critical Temperature T _c	9 K
Q ₀ at 4.2 K	6 x 10 ⁸
Q ₀ at 2.0 K	3 x 10 ¹⁰
Max. gradient E _{acc} (theory)	50 MV/m

Approximate E_{acc} and Q_0 given for 1.3 GHz TeSLA or 1.5 GHz CEBAF cavities with R_{res} small

Potential of Nb₃Sn

Cornell University

Approximate E_{acc} and Q₀ given for 1.3 GHz TeSLA or 1.5 GHz CEBAF cavities with R_{res} small

Potential of Nb₃Sn

 For lower-energy industrial applications, it may not be cost-effective to have a supply of 2 K LHe

- Higher T_c of Nb₃Sn allows low-loss operation with atmospheric 4.2 K LHe, or even gas/supercritical He
- Flue gas, waste water treatment, isotope production, security

Images from S. Sabharwal, NA-PAC13

Nb₃Sn Challenges

Flux lattice in a Type II Superconductor E.H. Brandt, Rep. Prog. Phys. 58 (1995)

Nb₃Sn Phase Diagram A. Godeke, Supercond. Sci. Tech, 2006

Cornell Coating Chamber

Coating Procedure

Coated Cavity

Before Coating

After Coating

- Pioneering work at Siemens AG, U. Wuppertal, K.F. Karlsruhe, SLAC, Cornell U., Jefferson Lab, and CERN
- U. Wuppertal:
 - Very small R_s values in Nb₃Sn cavities
 - Strong Q-slope, cause uncertain

Adapted from G. Müller et al, U. Wuppertal, TESLA Report 2000-15, 2000

"Weak Link" Grain Boundaries

 Losses in material between crystal grains

Cornell University

- Performance similar in appearance to Nb/Cu
- Systematic study on small samples: strong effect from grain size
- Preliminary annealing attempts on cavities gave poor results

Images adapted from T. Proslier et al., NuFact09 and M. Hein et al., IEEE Trans. Supercond., 2001

- First cavity: Wuppertal recipe
- Strong Q-slope observed similar to Wuppertal

- Found could grow grains by factor of ~2 while maintaining desired stoichiometry by modifying Wuppertal recipe
 - Extra annealing step: Furnace at 1100 C, but tin heater off

No annealing step, average grain size $\sim 1 \ \mu m$

- 6 hour annealing during coating process
- No strong Q-slope observed

4.2 K Comparison Curves

2.0 K Comparison Curves

- BCP 10 minutes inside and outside to clean entire surface before putting cavity into clean room furnace
- 10 micron BCP inside to reset RF surface

Larger niobium grains after 1100 C heat treatment

Repeatability

1.3 GHz single cell Cornell ERL shape

Field Limitation – Quench

Cornell University

 Temperature maps show excess heating in small area in high magnetic field region – possible defect?

- Try to prevent/remove defects via:
 - HF rinse (layer is thin, so need very light removal)
 - Centrifugal barrel polishing (first use on Nb₃Sn)
 - EP substrates (first use on Nb₃Sn)

Material Removal

1.3 GHz single cell Cornell ERL shape

Material Removal

Developing New Understanding

Just After Coating

Pulsed Quench Field

Nb₃Sn progress

Slides courtesy G. Eremeev, JLab

The coating system during the commissioning run.

Temperature and pressure profile during coating system commissioning run. The furnace pressure is in 1E-7 Torr range and the temperature deviation is <1 °C at 1200 °C.

Jefferson Lab

- The R&D furnace for Nb₃Sn development has been delivered and commissioned empty in November 2013.
 - The Nb₃Sn insert has been converted from horizontal to vertical orientation, loaded with a CEBAF-shape 1-cell cavity (C3C4), Sn, and SnCl₂, and installed into the new furnace. The commissioning run was done in "Siemens" configuration at temperatures of interest in March 2013.
 - The coating system is planned to be commissioned with separate heating and cooling of Tin crucible, "Wuppertal" configuration.

Nb₃Sn progress

The resonant frequency as a function of temperature during cooldown. Data indicate the transition temperature of about 18 K.

Quality factor of the Nb₃Sn coated C3C4 as a function of field at 4 K and 2 K.

Slides courtesy G. Eremeev, JLab

- The single cell (C3C4) was found to have complete coating without any droplets on the RF surface.
- The cavity went through the standard preparation procedure for RF testing, i.e., degreasing, HPR, etc., evacuated, and tested at 4 and 2 K.
- The cavity had the transition temperature of about 18 K. The low field Q₀ was 7E9 at 4 K and 9E9 at 2 K. The cavity exhibited strong Qslope dropping to about 1E9 at 8 MV/m at both temperatures.

- Alternative materials can benefit future SRF linacs
 - Nb easy to work with, but reaching fundamental limits
 - Nb₃Sn very promising order of magnitude more efficient, twice energy gain per length
- New research: significant Nb₃Sn performance improvement
 - Strong Q-slope suppressed after extra annealing step
 - High Q_0 at useful fields, T = 4.2 K
 - First cavity to outperform niobium
- With continued R&D can surpass limitations
 - Fundamental studies for better understanding
 - Modern cavity treatments never used on Nb₃Sn

- My advisor Matthias Liepe
- Fellow Cornell graduate students
- Collaborators

