Due Tuesday 9/14/04

Part 1

(1) To check that $T=1 / 2 \pi \alpha^{\prime}$ is the tension (energy per unit length) of the string, consider, at $X_{0}=t=0$ and $\tau=0$, a circle in the $X_{1}-X_{2}$-plane:

$$
\begin{equation*}
X_{1}=R \cos (2 \pi \sigma), \quad X_{2}=R \sin (2 \pi \sigma) \tag{1}
\end{equation*}
$$

Show that, after restoring the τ-dependence, it satisfies the wave equation

$$
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X_{\mu}=0
$$

and the constraint equation $\partial_{\tau} X \cdot \partial_{\sigma} X=0$.
The other constraint $\partial_{\tau} X \cdot \partial_{\tau} X+\partial_{\sigma} X \cdot \partial_{\sigma} X=0$ is also satisfied if $X_{0}=2 \pi R \tau$.
With $P_{0}=T \partial_{\tau} X_{0}=2 \pi R T$, the energy is $p_{0}=\int_{0}^{1} d \sigma P_{0}=2 \pi R T$.
(2) Derive the Virasoro algebra. Ignore the constant term (the central charge) on the RHS.

Part 2 :

(3) Go over the light-cone quantization in Ch. 1.
(4) To check the ζ-function regularization, one may introduce a cutoff and then remove the divergent term via a world-sheet cosmological counter term. Consider

$$
\begin{equation*}
F(s)=\sum_{k=1}^{\infty} k^{-s} \tag{2}
\end{equation*}
$$

for $s=-1$. Let $f(\epsilon)=\sum_{k=1}^{\infty} e^{-\epsilon k}$, so

$$
\begin{equation*}
F(-1)=-\lim _{\epsilon \rightarrow 0} \frac{\partial f(\epsilon)}{\partial \epsilon} \tag{3}
\end{equation*}
$$

Compare with Eq.(1.3.34) in Ch.1.
Comment: In general, consider the Riemann zeta-function

$$
\zeta(s)=\sum_{k=1}^{\infty} k^{-s}
$$

For example, $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$. For negative s, we have

$$
\zeta(1-2 n)=-\frac{B_{2 n}}{2 n}
$$

where $B_{2 n}$ is the Bernouli number. Note that $B_{2}=1 / 6$.
(5) Derive the Virasoro algebra with the central charge.

You may find the central charge term either by brute force (normal ordering), or by a more streamlined approach explained in p80 in GSW I.
(6) Let us go back to Problem (1) above. Decompose the solution to its left-moving and right-moving parts, so (up to a sign and normalization)

$$
\mathbf{X}_{R}\left(\sigma^{-}\right) \simeq \frac{1}{2}\left(\sin \left(2 \pi \sigma^{-}\right),-\cos \left(2 \pi \sigma^{-}\right), 0,0, \ldots\right)
$$

If one wants to add a component of a higher harmonic to this lowest harmonic solution, show that (for $1>b \geq 0$)

$$
\begin{array}{r}
\mathbf{X}_{R}\left(\sigma^{-}\right)=\frac{1}{2}\left((1-b) \sin \left(2 \pi \sigma^{-}\right)+\frac{b}{3} \sin \left(6 \pi \sigma^{-}\right),-(1-b) \cos \left(2 \pi \sigma^{-}\right)-\frac{b}{3} \cos \left(6 \pi \sigma^{-}\right)\right. \\
\left.-2 \sqrt{b(1-b)} \cos \left(2 \pi \sigma^{-}\right), 0, \ldots\right) \tag{4}
\end{array}
$$

is the only solution. That is, the constraint only allows the inclusion of the 3rd harmonic (not 2nd, 4th, 5th, 6th etc.).

