Due Tuesday 10/26/04

Finish reading Chapter 8.

Part 1

(1) In class, we constructed the T^{2} / Z_{2} orbifold. For a torus with a Z_{3} symmetry, we find that T^{2} / Z_{2} is a tetrahedron, with the topology of a sphere. What is the shape of T^{2} / Z_{3} ? How many fixed points does it has ?

Part 2:

(2) Starting with the same torus, find the shape and the number of fixed points in the T^{2} / Z_{6} orbifold. Start with a square torus, fnd the shape and the number of fixed points in the T^{2} / Z_{2} and T^{2} / Z_{4} orbifolds. Note that there can be different types of fixed points in an orbifold.
(3) A Z_{2} twist on S^{1} yields the S^{1} / Z_{2} orbifold. Show that the partition function Z^{\prime} Eq.(8.5.11) is that of S^{1} / Z_{2} CFT. Use Eq.(7.2.37) to write it in terms of the Θ functions given in Homework 3. Show that it is modular invariant.

Argue that a Z_{2} twist on S^{1} / Z_{2} gives back the S^{1}.
Now go back to the partition function (8.2.9). Check that twisting the compactified X^{25} with the inclusion of the twisted sectors gives a modular invariant Z^{\prime} for the bosonic string theory.
(4) Check Eq.(8.5.21).
(5) If you have not derived Eq.(2.9.19), do it now.

